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Example: Lists of Differences

100 101 95

monthly account balances

diffs−→
←−
undiff

100 +1 -6

initial value, monthly gains



Lists of Differences in Scala
def undiff(l: List[Int]): List[Int] =

l.scanLeft(0)(_ + _).tail
// List(a,b).scanLeft(z)(f) = List(z, f(z,a), f(f(z,a),b))

val testUndiff = undiff(List(100, 1, -6)) // 100, 101, 95

Goal: define diffs such that:
val testDiff = diffs(List(100, 101, 95)) // 100, 1, -6

// more generally:
def check(l: List[Int]): Boolean =

undiff(diffs(l))==l // should always evalute to true



Lists of Differences in Scala
def undiff(l: List[Int]): List[Int] =

l.scanLeft(0)(_ + _).tail
// List(a,b).scanLeft(z)(f) = List(z, f(z,a), f(f(z,a),b))

val testUndiff = undiff(List(100, 1, -6)) // 100, 101, 95

Goal: define diffs such that:
val testDiff = diffs(List(100, 101, 95)) // 100, 1, -6

// more generally:
def check(l: List[Int]): Boolean =

undiff(diffs(l))==l // should always evalute to true



diffs Implementation

def diffs(l: List[Int]): List[Int] = {
l match {

case Nil() => l
case _ :: Nil() => l
case h :: t =>

diffs(t) match {
case h1 :: t1 => h :: (h1 - h) :: t1

}
}

}
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ensuring (undiff(_) == l) // in Scala: runtime assertion
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Testing diffs
scala> :load Test.scala
Test.scala:17: warning: match may not be exhaustive.
It would fail on the following input: Nil

scala> diffs(List(3, 13, 23)) // each time ensuring runs, too
res1: List[Int] = List(3, 10, 10)

scala> diffs(List())
res2: List[Int] = List()

scala> diffs(List(4,3,20,100,23,5))
res3: List[Int] = List(4, -1, 17, 80, -77, -18)
...

Write more tests.

And QuickCheck! Great talk yesterday by John Hughes.
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But...

Does it ever end? Will we ever be done, or ?
Run Stainless on the file:
$ stainless-scalac ListDiffsInt.scala --solvers=smt-cvc4

=> Found measure for scanLeft.
=> Found measure for diffs.
Generating VCs for those functions: undiff, diffs
- Now solving 'postcondition' VC for diffs @12:30...
...
total : 23 | valid : 23 (5 from cache) | invalid: 0 | unknown: 0

Done.
Stainless generated 23 formulas that imply correctness (for all inputs).

It then automatically proved that these formulas are logically valid.
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It Was All Automatic – This Was The Entire Input
import stainless.lang._
import stainless.collection._
object Diffs {
def undiff(l: List[Int]): List[Int] =

l.scanLeft(0)(_ + _).tail
def diffs(l: List[Int]): List[Int] = {

l match {
case Nil() => l
case _ :: Nil() => l
case h :: t =>
diffs(t) match {

case h1 :: t1 => h :: (h1 - h) :: t1
}

}
} ensuring (undiff(_) == l)

}

Proof guarantees
like Coq, Isabelle/HOL
+ automation
+ specs and code executable

(like for QuickCheck)
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What Did Stainless Prove? Why does it hold?

def diffs(l: List[Int]): List[Int] = {
// function terminates for all inputs
l match { // match is exhaustive
case Nil() => l
case _ :: Nil() => l
case h :: t =>

diffs(t) match { // match is exhaustive
case h1 :: t1 => h :: (h1 - h) :: t1

}
}

} ensuring (undiff(_) == l) // spec holds for all inputs



Rest of The Talk
Two questions:

1. How to get specifications?

2. Will this ever stop? (termination of functions)
f => (a,b) => (f(a), f(b)) (x => x(x))(x => x(x))

def map(f, l) = f(l.head) :: (() => map(l.tail ()))
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Question 1: How to get specifications?





Source #1 of Free Specifications: Semantics
def diffs(l: List[Int]): List[Int] = {

l match { // match is exhaustive
case Nil() => l
case _ :: Nil() => l
case h :: t =>

diffs(t) match { // match is exhaustive
case h1 :: t1 => h :: (h1 - h) :: t1

}
}

}
We never want: match to fail, Nil.head, x/0, list(-1)
Stainless generates these from the code alone (nothing to write)!



Source #2 of Free Specifications: Semantics#
def diffs(l: List[Int]): List[Int] = {

l match {
case Nil() => l
case _ :: Nil() => l
case h :: t =>

diffs(t) match {
case h1 :: t1 => h :: (h1 - h) :: t1

}
}

}
Scala: Int is a signed 32-bit integer, [−231, 231−1]. Ops are modulo 232

Do we want to allow overflow and underflow for “-” in our program?



Overflows: An Example of Sharper Semantics
Stainless correctly models Int as 32-bit signed integer of Scala.
Our program so far was correct: diffs is really inverse of undiff.
Stainless also supports BigInt, which maps to Z (runs 100x slower).
But stainless can do overflow checking for all Int operations:
strict-arithmetic = true
- Result for 'body assertion: Subtraction overflow' VC for diffs:
=> INVALID
Found counter-example:
l: List[Int] -> -2147483648 :: 0 :: Nil()

which is due to 0− (−231) computation in:
case h1 :: t1 => h :: (h1 - h) :: t1



Diffs of Increasing Sequence
def increasing(l: List[Int]): Boolean =

l match {
case Nil() => true
case _ :: Nil() => true
case x1 :: x2 :: xs =>

x1 <= x2 && increasing(x2::xs)
}

def diffs(l: List[Int]): List[Int] = {
require(increasing(l))
l match {
case Nil() => l
case _ :: Nil() => l
case h :: t =>
diffs(t) match {

case h1 :: t1 => h :: (h1 - h) :: t1
}

}
}

Again counterexample!
-536870909 :: 1644167168 :: Nil()

Prelude> 1644167168 - (-536870909)
2181038077
Prelude> 2^31
2147483648

scala> 1644167168 - (-536870909)
res0: Int = -2113929219

scala> 2^31
res1: Int = 29
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Diffs of Increasing Non-Negative Sequence
def diffs(l: List[Int]): List[Int] = {

require(l == Nil() || (l.head >= 0 && increasing(l)))
l match {
case Nil() => l
case _ :: Nil() => l
case h :: t =>
diffs(t) match {

case h1 :: t1 => h :: (h1 - h) :: t1
}

}
}

All verifies!
Stainless also proves that require holds for all recursive calls.
Why does it hold in the example? Unfold functions to see.
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Aside: What If Specifications Are Wrong?

You are used to programming but not specifying, your specifications are
initially wrong much more often than code!

And that’s okay.

Strive to write specs that are as independently wrong compared to code
as possible.

Chance of writing code that meets the spec but where both of them are
wrong is much lower than the chance of code alone being wrong.
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My Mistake: Thought This Would Prevent Overflows
def increasingS(l: List[Int]): Boolean =

l match {
case Nil() => true
case x :: Nil() => 0<= x
case x1 :: x2 :: xs =>

x1 <= x2 && increasingS(x2::xs)
}

def diffs(l: List[Int]): List[Int] = {
require(increasingS(l))
l match {
case Nil() => l
case _ :: Nil() => l
case h :: t =>
diffs(t) match {

case h1 :: t1 => h :: (h1 - h) :: t1
}

}
}

Again overflow found!
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This Variant Does Verify
def increasing(l: List[Int]): Boolean =

l match {
case Nil() => true
case x :: Nil() => 0 <= x
case x1 :: x2 :: xs =>

0 <= x1 && x1 <= x2 && increasing(x2::xs)
}

def diffs(l: List[Int]): List[Int] = {
require(increasing(l))
l match {
case Nil() => l
case _ :: Nil() => l
case h :: t =>
diffs(t) match {

case h1 :: t1 => h :: (h1 - h) :: t1
}

}
}



Source #3 of Specifications: Symbolic Tests
Like tests, but with symbolic values for elements.

def symTest1(x1: BigInt, x2: BigInt,
x3: BigInt, x4: BigInt): Boolean = {

diffs(List(x1,x2,x3,x4)) ==
List(x1, x2 - x1, x3 - x2, x4 - x3)

}.holds

Stainless proves it in 1.5 seconds on a laptop, for all (infinitely many)
values x1,x2,x3,x4. Also works for Int.
Such tests prove or give a counterexample once recursion gets unfolded
by the depth of the data structure.



Source #4 of Specifications: Inverses
diffs and undiff are inverse of each other:

def diffs(l: List[Int]): List[Int] = {
...

} ensuring (undiff(_) == l) // spec holds for all inputs

Further examples:
▶ (lossless) compression and decompression (Huffman, LZW)
▶ printing and parsing
▶ serialization: storing to files, network, file formats



Source #5 of Specifications: Another Implementation
Regression verification: past versions as a reference.

def diffs2(l: List[Int]): List[Int] = {
l match {

case Nil() => l
case h :: t =>

h :: l.zip(t).map({ case (h1,h2) => h2 - h1})
}

}
@induct
def equiv(l: List[Int]): Boolean = {

diffs(l) == diffs2(l)
}.holds



Source #6 of Specifications: MOOCS
Popular course and specialization on Coursera, e.g. first course

Consider second course, Functional Program Design in Scala
Lecture 2.1 - Structural Induction on Trees

Correctness of binary search tree storing integers - IntSet.scala



Complete IntSet.scala Example from the MOOC
case class Empty() extends IntSet
case class Node(left: IntSet, elem: Int, right: IntSet) extends IntSet
abstract class IntSet {

def contains(x: Int): Boolean = this match {
case Empty() => false
case Node(left, elem, right) ⇒
if (x < elem) left.contains(x)
else if (x > elem) right.contains(x)
else true }

def incl(x: Int): IntSet = this match {
case Empty() => Node(Empty(),x,Empty())
case Node(left, elem, right) =>
if (x < elem) Node(left.incl(x), elem, right)
else if (x > elem) Node(left, elem, right.incl(x))
else this }

}



What the lecture segment proves
Algebraic properties: relate multiple operations
▶ unlike simple ensuring that had no user defined functions

For all s:IntSet, x:Int, y:Int

P1: ! Empty().contains(x)
P2: s.incl(x).contains(x)
P3: x != y ==> (s.incl(x).contains(y) == s.contains(y))

How does Martin Odersky prove these properties in the lecture?
▶ induction on tree structure (assume for subtrees)
▶ equational reasoning (substitute equals for equals)
▶ case analysis (e.g., ordering between integer elements)



Manual Proof vs Stainless

Coursera lecture segment with manual proof: 15 minutes
Type and implementation itself: 24 lines of code

Proving using stainless:
▶ 20 lines of properties and the statement they should be shown by

induction
▶ 1 second of waiting for stainless to finish



Source #7 of Specifications: Models

seL4 microkernel effort in Nicta: Haskell OS as a model for C version

Lighter versions:
▶ sizes: gives us idea when things are growing, shrinking
▶ sets: what is lost and what not (and we can automate it!)
▶ lists: great specs, even if automation more challenging



Size as a Model
Size abstraction on diffs:

def diffs(l: List[Int]): List[Int] = {
l match {

case Nil() => l
case _ :: Nil() => l
case h :: t =>

diffs(t) match {
case h1 :: t1 => h :: (h1 - h) :: t1

}
}

} ensuring (_.size == l.size)



Set as a Model for Trees: Set Content
sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: BigInt, right: Tree) extends Tree

def content(tree: Tree): Set[BigInt] = tree match {
case Leaf() => Set.empty[BigInt]
case Node(l, v, r) => content(l) ++ Set(v) ++ content(r)

}
def isBST(tree: Tree) : Boolean = tree match {

case Leaf() => true
case Node(left, v, right) => {

isBST(left) && isBST(right) &&
forall((x:BigInt) => (content(left).contains(x) ==> x < v)) &&
forall((x:BigInt) => (content(right).contains(x) ==> v < x))

}
}



Set as a Model for Trees: Spec Using Content
def insert(tree: Tree, value: BigInt): Node = {
require(isBST(tree))
tree match {

case Leaf() => Node(Leaf(), value, Leaf())
case Node(l, v, r) => (if (v < value) {
Node(l, v, insert(r, value))

} else if (v > value) {
Node(insert(l, value), v, r)

} else {
Node(l, v, r)

})
}

} ensuring(res => isBST(res) &&
content(res) == content(tree) ++ Set(value))



Source #8 of Specifications: Abstract Laws
abstract class Monoid[A] {

def empty: A
def append(x: A, y: A): A
// Put laws into type class definitions:
@law def law_leftIdentity(x: A) =
append(empty, x) == x

@law def law_rightIdentity(x: A) =
append(x, empty) == x

@law def law_associativity(x: A, y: A, z: A) =
append(x, append(y, z)) == append(append(x, y), z)

}
def bigIntAdditiveMonoid: Monoid[BigInt] = new Monoid[BigInt] {
def empty = 0
def append(x: BigInt, y: BigInt) = x + y
// Stainless inserts and proves monoid laws automatically

}



Parallelism: Talk of Gabriele Keller Yesterday

def fold[A](xs: Collection[A])(m: Monoid[A]): A = {
// divide and conquer
// m ensures that result does not depend on how we divide
...

}

def scan[A](xs: Collection[A])(m: Monoid[A]): Collection[A] = {
// clever divide and conquer parallel scan using m.append
// m ensures that result does not depend on how we divide
...

}



Conc Tree and Conc Rope
Aleksandar Prokopec, Martin Odersky: Conc-Trees for Functional and Parallel
Programming. LCPC 2015: 254-268
New data structures, building blocks for parallel collections
▶ ConcTree: O(logn) lookup, update, split, concat
▶ ConcRope: additionally O(1) amortized prepend and append

Designed and proved (manually) in the paper above

Formally proved correct by Ravichandhran Kandhadai Madhavan in Leon
and stainless (450 lines; 30sec); Ravi also formalized proofs of running
time bounds.
R. Madhavan, S. Kulal, V. Kuncak: Contract-based resource verification for
higher-order functions with memoization. POPL 2017: 330-343



Question 2: Will this every stop?



Stainless Tries to Prove Every Function Terminating
def diffs(l: List[Int]): List[Int] = {
decreases(l) // inferred automatically
l match {

case Nil() => l
case _ :: Nil() => l
case h :: t =>

diffs(t) match {
case h1 :: t1 => h :: (h1 - h) :: t1

}
}

}
Inference of lexicographic measures works in many cases.



Why We Want Termination
It’s a desired property for many internal functions!
Equation associated with, e.g., f(x) = 1+ f(x) is a false statement.
If we do not check termination we must do things like:
▶ tell users that defining such functions means assuming false

(minefield for users)
▶ give up equations associated with the function (makes manual and

automated reasoning uglier)
▶ extend all types (e.g. Int, Boolean, ...) with ⊥

(was in fashion, but no longer: HOL, Isabelle/HOL, Coq, NuPRL)
Some functions that interact with environment should not be
terminating, but you can transform them into terminating ones
automatically by adding “fuel” parameters and an option type.



When do Higher-Order Functions Terminate
We say a function terminates if it terminates on terminating inputs:

def pairMap[A,B](f: A => B)(p: (A,A)): (B, B) =
(f(p._1), f(p._2))

parMap will diverge given certain diverging f.
But if f always terminates, so will pairMap.
If we have well-founded set of types, we can define such property by
recursion on the type structure:

JA⇒ BK= {f | ∀a∈ JAK. (f a) evaluates in finitely many steps to v∈ JBK}



System FR
A type system foundation for Stainless verifier:
▶ Extends System F with refinements and recursive types
▶ Dependently typed system with Π, Σ, ∩,

∪
,{_}

▶ Type refinements capture preconditions, postconditions
▶ Support for contravariant data types and streams: indices and ∩
▶ Type checking ensures termination using measures (not restricted

to structural recursion for function definitions)
Proven correct by interpreting types as sets of untyped terms.
Proofs formalized in (20k lines of) Coq by Jad Hamza.
Verification condition generator adapted to follow the type system.
J. Hamza, N. Voirol, V. Kuncak
System FR: Formalized Foundations for the Stainless Verifier
Proc. ACM Program. Lang. OOPSLA. 2019.

http://lara.epfl.ch/~kuncak/papers/HamzaETAL19SystemFR.html


Under the Hood of Stainless



Case Studies
Verified 14k lines of Scala code
▶ 5.8k verification conditions
▶ 6.5 minutes

Verified examples include
▶ Monad laws. Sorting algorithms. Graph reachability. Dynamic

programming.
▶ Lazy and concurrent data-structures. Simple distributed algorithms.
▶ LZW Compression. Model of key server. Smart contracts.
▶ Number theory properties (Gödel numbering)



Uses

Teaching “Formal Verification” course at EPFL

Collaboration with Interchain Foundation spinoff (distributed algorithms)

Discussions with IOHK and others in the past



Stainless for Haskell or Closure, anyone?

Stainless currently supports Scala 2 and an early version of Scala 3.

We are open to collaboration on adding front ends for other languages!

We have a cool parsing combinator library that uses zippers and
derivatives for efficient parsing and tree building:

https://github.com/epfl-lara/scallion/

Developed by Romain Edelmann, a PhD student in my group

https://github.com/epfl-lara/scallion/


Formalized Mathematics
System FR is about computable functions.
We have:

(Any ٦=> Any) ٦<: Any
and subtyping for us is set inclusion. But the set of total functions on
non-trivial set cannot be included in itself.
For reasoning about mathematical functions, we need something else.
Solution: use this type system inside a general-purpose logic:
▶ We have soundness and embedding of System FR in Coq
▶ We can alternatively embed System FR in set theory

Among the most sophisticated systems for formalized set theory and
mathematics is Mizar by Andrzej W. Trybulec, born 1941 in Kraków.
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diffs Comes from Leon’s Synthesis Benchmarks
Video and/or demo from http://leon.epfl.ch

def diffs(l : List[BigInt]): List[BigInt] = {
???[List[BigInt]]

} ensuring { (res : List[BigInt]) =>
res.size == l.size && undiff(res) == l

}

def undiff(l: List[BigInt]) = {
l.scanLeft(BigInt(0))(_ + _).tail

}

http://leon.epfl.ch


Conclusions
Automated verification can be easier than hand proofs
Key design choice: use purely functional language for both the code and
the properties
▶ convenience: developers can use a familiar language, reuse

properties from QuickCheck-like testing
▶ feasibility: functional constraints can be handled using SMT

solvers and iterative function unrolling, enabling the discovery of
both counterexamples and proofs

▶ expressive power: many invariants, but also other language
features (e.g. imperative) and non-functional properties (time,
memory) can be encoded into purely functional constraints



Stainless can make your code shine.

https://stainless.epfl.ch

https://stainless.epfl.ch

