
Distributed Hash Tables, Video, and Fun!

Thomas Gebert and Nicholas Misturak

February 14, 2020

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 1 / 76



About Us

Section 1

About Us

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 2 / 76



About Us

Who are we?

Thomas Gebert
Software Engineer in New York, NY.
Certified Eccentric.
Mostly focuses on backend services.

Nicholas Misturak
Front-End Web Developer in Orlando, FL.
Work in JavaScript and React.
Know some functional programming.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 3 / 76



About Us

Not Experts

We are hobbyists who want to build cool things.
Possible we are doing things sub-optimally

If you see something we’re doing wrong, let us know!

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 4 / 76



Background

Section 2

Background

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 5 / 76



Background

We want to make a video sharing platform

YouTube has a near-monopoly on video-sharing on the web
As a central entity, they have the benefit of complete control of their
platform
However, they also assume all of the cost of maintaining this platform

Video transcoding and storage are incredibly expensive
Completely infeasable to scale with the resources of most startups

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 6 / 76



Background

The Solution

Don’t write a centralized system, write a distributed one
By distributing, we can ask participants in the platform to do the work
of transcoding and storage
In this way, we are sharing the cost of the platform

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 7 / 76



Background

What we’ve built

An efficient, peer-to-peer video sharing platform.
Every node on the system is a client and a server.
Communication happens over TCP. . . even for the local client.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 8 / 76



Background

What we’ve built

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 9 / 76



Background

Prototype

Original version built in early 2018 in Haskell.
Code was a mess

Haskell’s networking libraries can be very primitive.
There was difficulty in making Haskell’s shared-memory-style system
work with the model that I wanted for the project.

Needed a rewrite in a language with better library support.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 10 / 76



Background

Rewrite

Decided to rewrite prototype in Clojure.
Wanted Go’s CSP in a functional language.
Needed mature and well-supported network libraries.

Could not be vanilla Java because life is too short as it is.
Clojure also has Haskell-style transactional memory for non-reactive
concurrency.
Dynamic languages can be more-pleasant than typed languages for
handling low-level networking stuff.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 11 / 76



Background

Software Used

Backend
JeroMQ

Low-level socket library to handle TCP and UDP logic.
MessagePack
Incredibly fast binary-serialization library with bindings in virtually every
language.
core.async

Implementation of Go’s CSP for Clojure.

Frontend
Re-frame

React port to ClojureScript

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 12 / 76



Background

HTTP Live Streaming

The ability to partition videos and glue them together on the fly is an
interesting Computer Science topic in itself.
HTTP Live Streaming (HLS)

Part of the web standard.
Works by creating a Winamp Playlist file (.m3u8), and requesting
chunks of the video on the fly.
This allows us to store any video across the whole network, increasing
redundancy and parallelism.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 13 / 76



Distributed Hash Tables

Section 3

Distributed Hash Tables

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 14 / 76



Distributed Hash Tables

What is a DHT?

A data structure to store data and routing information across a cluster
of nodes without a centralized server.
Data is shared and replicated across nodes.

There are no central servers.
Popular algorithms include Chord, Pastry, Tapestry, and Kademlia

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 15 / 76



Distributed Hash Tables

Kademlia

Most popular algorithm for distributed hash table programs
Used by Facebook and other companies to distribute updates.
Provides worst-case log2 (n) lookups

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 16 / 76



Routing

Section 4

Routing

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 17 / 76



Routing

What is a routing table?

A routing table provides a way for us to look up and store nodes that are of
interest to us.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 18 / 76



Routing

What’s the point of a routing table?

It would be infeasible to store reference to all the nodes in the cluster.
Ideally, we want to store a small subset of all the nodes that will allow
us to find any given value or node in the table eventually.
It would be best if these lookups were faster than linear time and were
likely to resolve.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 19 / 76



Routing

Routing Table

Each machine participating in the DHT is a Node.
Nodes are given random 160 bit IDs.
“Distance” is defined by XORing two IDs.

Might seem weird to use as a distance metric but consider this.
a ⊕ b = 0 ⇐⇒ a = b
a ⊕ b = b ⊕ a

Gives us a deterministic way to figure out path to where data is stored
without central synchronization.

Each node has its own routing table.
The table is divided into buckets of a set size.

For the sake of this demo, let’s assume that the size is 5.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 20 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 21 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 22 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 23 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 24 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 25 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 26 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 27 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 28 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 29 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 30 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 31 / 76



Routing

Routing Table

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 32 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 33 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 34 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 35 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 36 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 37 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 38 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 39 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 40 / 76



Routing

Eviction

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 41 / 76



Routing

Routing Table

Storing nodes this way allows us to convert the address space into a
directed graph.
Lookups tend to be logarithmic.
Allows a traversal accross the entire address space by storing a lot of
information about our neighbors, but allowing a wide distribution to
“far-away” nodes.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 42 / 76



Put and Get

Section 5

Put and Get

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 43 / 76



Put and Get

Hashing

Like a normal hash table, keys are hashed before insertion.
The hash length must be the same length as the node ID length.

By doing this, we keep our graph directed and allow for deterministic
traversal.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 44 / 76



Put and Get

Put Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 45 / 76



Put and Get

Put Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 46 / 76



Put and Get

Put Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 47 / 76



Put and Get

Put Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 48 / 76



Put and Get

Get Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 49 / 76



Put and Get

Get Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 50 / 76



Put and Get

Get Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 51 / 76



Put and Get

Get Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 52 / 76



Put and Get

Get Logic

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 53 / 76



Put and Get

RPC

For node communication, we defined an RPC protocol living on top of
JeroMQ
We define a multimethod to handle the dispatching of the message
Kademlia mandates that you have the following RPC commands.

PING
STORE
GET
FIND

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 54 / 76



NATs

Section 6

NATs

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 55 / 76



NATs

NATs

Network Address Translation
The feature of your router or firewall that allows you to share a single IP
address across many devices.
Notoriously hard to work around when doing network applications.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 56 / 76



NATs

NATs

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 57 / 76



NATs

Hole Punching

External computers don’t know how to talk directly to computers
within NAT (without a port forward)

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 58 / 76



NATs

Hole Punching

One solution, both computers connect to a server

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 59 / 76



NATs

Hole Punching

Since the socket is open to both computers, the server can stich
together a direct connection.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 60 / 76



NATs

Hole Punching

In order to keep this decentralized, we use the following algorithm.
Any node that has an open port gets priority on the routing table.
We maintain one constant connection to a node with an open port per
bucket.
Each node will consistently publish any nodes with open ports that it
has reference to as part of its metadata.
When trying to “get” from a closed node, a hole-punch will be
attempted through a mutually connected node if it exists.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 61 / 76



NATs

Changing Data

It would be a bit of a lame user experience if we don’t give the user the
ability to update anything.
Distributed systems can be really difficult to figure out which update
happened most recently.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 62 / 76



NATs

Vector Clock.

Vector Clocks allow to create a partial ordering of data updates in a
distributed system.
Items are tagged with a counter (independent of wall-time), and this
counter is incremented upon each time the information is touched by
another entity.
When two entities have created incompatible updates to data, a
conflict is created and it must be resolved.

We cheat and during a conflict, we rely on wall-clock time and choose
the latest from there.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 63 / 76



Frontend

Section 7

Frontend

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 64 / 76



Frontend

A word on JavaScript

I actually like JavaScript.
JavaScript punishes the OOP programmer.
Forced me to adopt functional programming techniques such as
data/function seperation and composition.
Has significant gaps though:

Large parts of the standard library focus around mutation
Missing pieces that should be a part of the language but aren’t
“Pit of Despair” (classes, prototypical inheritence, null vs undefined)

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 65 / 76



Frontend

Why ClojureScript?

Fixes the problems I have with JavaScript while sharing similar
philosophy and idioms:

Shared design ideology of working with many functions over relatively
few data types
Embraces “dynamic programming” (dynamic typing, interactivity)
Has several useful features that JavaScript is trying to add

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 66 / 76



Frontend

Future JavaScript today

Optional Chaining
(https://github.com/tc39/proposal-optional-chaining)
Pattern Matching
(https://github.com/tc39/proposal-pattern-matching)
Pipeline Operator
(https://github.com/tc39/proposal-pipeline-operator)
Do Expressions (https://github.com/tc39/proposal-do-expressions)
Protocols
(https://github.com/michaelficarra/proposal-first-class-protocols)
Macros (https://github.com/kentcdodds/babel-plugin-macros)

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 67 / 76



Frontend

Other Niceties

Immutability by default
Expression-based
Homoiconicity
One null type
No == vs ===

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 68 / 76



Frontend

Reframe vs React

HTML Templating:
React’s JSX brings the pain of HTML into JavaScript
Awkward escapement rules trip up newbies
Reframe’s use of native data structures largely sidesteps these issues

State Management:
Reframe is a similar model to Redux, but with far less headaches
Out of the box support for returning effects, including async
Generally more consise and straightforward to write

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 69 / 76



Roadmap

Section 8

Roadmap

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 70 / 76



Roadmap

In Progress

Formal verification of the system using TLA+.
Tonika Routing to prevent against potential attacks.
Allowing for “private” videos by employing the use of GPG.
Using blockchain (or something similar) to incentivize people to open
up ports and/or donate their CPU for more interesting computation
tasks.

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 71 / 76



Further Reading!

Section 9

Further Reading!

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 72 / 76



Further Reading!

Links

Kademlia Paper Feross Aboukhadijeh’s talk

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 73 / 76



Further Reading!

Contact

Thomas Gebert
thomas@gebert.app
gitlab.com/tombert

Nicholas Misturak
Twitter: @nrmisturak
gitlab.com/nrmisturak

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 74 / 76



Demo

Section 10

Demo

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 75 / 76



Demo

Demo

Thomas Gebert and Nicholas Misturak Distributed Hash Tables, Video, and Fun! February 14, 2020 76 / 76


	About Us
	Background
	Distributed Hash Tables
	Routing
	Put and Get
	NATs
	Frontend
	Roadmap
	Further Reading!
	Demo

