
Effect Handlers
A New Approach to Computational Effects

Maciej Piróg
University of Wrocław, Poland

Lambda Days 2020



This talk

Effect handlers: what and why?

Live coding in our new experimental implementation



Why do we FP?
We compose our programs out of

foo
input(s) result

all the way – from the tiniest bits to the big components.

Well... Yeah... Hmm... But...



Why do we FP?
We compose our programs out of

foo
input(s) result

all the way – from the tiniest bits to the big components.

Well... Yeah... Hmm... But...



Computational effects
Input/output
Exceptions
Mutable state
Backtracking
Logging
Concurrency
Memoisation
Control (call/cc, ...)
Random value generation
Fresh identifier generation
...



God-given effects
(as in most CBV languages, like OCaml, Scheme, F#, Erlang)

Good things:
Out of the box

Bad things:
Only a predefined set of effects (backtracking search?)
Not tracked in the type system at all (Unit ⇒ Unit)
Fixed interaction between effects (transactional state?)



Do you enjoy programming with monads?

data source: No source, it’s a joke (but is it?)



Monads
(as in Haskell)

Good things:
User-defined, fit-for-purpose effects
Effects tracked in types

Bad things:
Monadic (= kind-of imperative) style of programming
Modularity issues (transformer stack!)



Effect Handlers
(as in Eff, Frank, Koka, Links, Helium)

Not that new on the theoretical side (Plotkin, Power, 2000s...)

Good things:
User-defined, fit-for-purpose effects
Effects tracked in types
Direct style of programming (refactoring!)
Easy custom interaction between effects

Bad things:
Still rather experimental as a programming construct



Operations and handlers
Effect signatures:
A bunch of (typed) operations, e.g.,

throw : Unit⇒ a for exceptions
put : S⇒ Unit and get : Unit⇒ S for state
flip : Unit⇒ Bool for nondeterminism

Handlers:
Define how to proceed when an operation is encountered

E.g., when throw is encountered, discard the entire computation within
the handler, and replace it with a default value.



The Helium language

Homepage & sources:
https://bitbucket.org/pl-uwr/helium

Docker:
docker run -it pluwr/helium repl

Implements some theory from:
Binders by Day, Labels by Night: Effect Instances via Lexically Scoped Handlers
by D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski (POPL 2020)

https://bitbucket.org/pl-uwr/helium


The Helium language

Effect handlers
Effect instances via lexical scoping
Advanced type-and-effect system
Effect polymorphism (without row types!)
Effect abstraction
Strong OneML-style module system

Reserch-level software (poor docs, hardly any tooling or libraring)



Example A

...in which the handler takes control over the situation



Example B

...in which the handler resumes the computation



Example C

...in which the handler resumes the computation many times



Thank you!

https://bitbucket.org/pl-uwr/helium

docker run -it pluwr/helium repl

https://bitbucket.org/pl-uwr/helium

