
Implementation of Digital
Synthesis in Functional
Programming
Giorgi Botkoveli
Cenikj Nikola
Abdin Hossameldin
Beka Grdzelishvili
Evan Sitt

Sylaj Tringa
Su Xiaotian
Szumi Xie
Viktória Zsók
Tsinadze Zurab1

1Eötvös Loránd University, Faculty of
InformaticsDepartment of Programming
Languages and CompilersH-1117
Budapest, Pázmány Péter sétány 1/C.,
Hungary
zsv@inf.elte.hu, Sitt.Evan@gmail.com

mailto:zsv@inf.elte.hu
mailto:Sitt.Evan@gmail.com

● Motivation
● Background
● Implementation

○ Wavetable Lookup Synthesis
○ Additive Synthesis
○ Envelopes
○ MIDI Input
○ PCM WAV Output

● Results
● Conclusion
● Future Work

OUTLINE

• To extend the possible applications that can be created with the pure
lazy functional programming Clean.

The project aimed to tackle an application that is completely dominated by
C++ and JAVA frameworks.

• The language offers very good abstractions tools for sound generation
implementation.

Higher order functions, lazy evaluation, and algebraic data types are
especially useful for processing digital signals and the musical paradigm.

• Typically accomplished within a C++framework
However, the methods can be non-intuitive and non-conducive to the
musical paradigm.

• Reinforce, develop, and expand functional programming skills of
students.

Demonstrate the applicability of Functional Programming skills.

MOTIVATION

• Digital Synthesis
First pioneered in 1957 with a
punch card controlled analog
synthesizer using 750 vacuum
tubes.
It is still continuously innovated by
the music industry. Digital
synthesizers use the power of
microprocessors to replicate
analog synthesis.

• Cross Disciplinary
Extensively popular today across
many disciplines, including music
and telecommunications.

BACKGROUND

• Storing a single period of a
certain waveform.

Storing precomputed values of a
single period of a waveform in an
constant time access array to
remove the cost of repeated
calculations.

• Table size based upon Sampling
Rate and Frequency

To accomodate a sampling rate of
44,100hz and the lowest human
audible frequency of 20hz the
project uses a table of 2205
values.

WAVETABLE LOOKUP SYNTHESIS

• The sound produced can be harmonically changed via access points.
Determined by frequency, it is simple to generate a sound by simply
modifying which indices to access.

• Wavetable lookup synthesis allows for quick prototyping of features.
This allows for quick waveform generation in conjunction with low
frequency oscillators, envelopes, and other effects.

• Works especially well with interpolation methods.
Values from indices that fall between two normal indices can be
determined via interpolation methods.

WAVETABLE LOOKUP SYNTHESIS

• Synthesizing a Fourier series by
weighted summation of
harmonics of the basic sine wave
can generate all waves
imaginable.

Approximation serves the
additional process of appropriately
converting digital discrete signals
to analog continuous signals

ADDITIVE SYNTHESIS

• Summation of input wave signals
to create a new output signal.

Additive and subtractive synthesis
are used between waveforms to
generate more complex and
sophisticated waveforms.

• Resulting waveforms can be
stored into waveform tables.

Recursively using
additive/subtractive synthesis and
storing the result into new
wavetables turns sophisticated
waveforms into a simple and
easily optimizable sequence of
binary operations.

ADDITIVE SYNTHESIS

• Applies dampening/expansion to
different stages of a sound.

Attack - Modifies sound from 0 to
max amplitude from noteOn.
Decay - Modifies sound from max
amplitude to Sustain level after
Attack phase.
Sustain - Level of max amplitude
to hold constant after Decay
phase.
Release - Modifies sound from
Sustain level to 0 after noteOff.

ENVELOPES

• Drastically alter a sound’s
character.

The difference between a
waveform becoming a “guitar” or a
“cello”.

• Start with the basic ADSR,
extended to generalized
multistep.

The project initially implemented
the basic ADSR envelope.
Extended to the DAHDSR and
8-Step Casio envelopes.
Final implementation of the
Generalized Multistep envelope.

ENVELOPES

• Stands for “Musical Instrument Digital Interface”
“Technical standard that describes a communications protocol, digital
interface, and electrical connectors that connect a wide variety of electronic
musical instruments, computers, and related audio devices for playing,
editing and recording music.”

• Contains detailed instructions that can be interpreted into musical
notation.

MIDI files don’t contain actual audio data and are therefore much smaller in
size. Due to this, they are more compact but this makes it more difficult to
parse it since there are a lot of information to extract and store.
Can further contain other detailed information for synthesizer standards
such as General MIDI (GM)

MIDI INPUT

• An audio file format standard, developed by
Microsoft and IBM, for storing an audio bitstream
on PCs.

Resource Interchange File Format (RIFF) bitstream
format
Pulse Code Modulation (PCM) Encoding
Uncompressed, universally supported.

• 8, 16, and 32 bit WAV supported in any sampling
rate.

Conversions are handled independently of the digital
synthesis and file writing.

PCM WAV OUTPUT

• Initial Testing was done with the first 16 bars of Beethoven’s Für Elise.
Für Elise was chosen for its simple notation involving only a single
instrument and monophonic harmonic and melodic lines.

• Test renders average around 3 seconds.
Initial renders averaged between 900 to 1000 seconds. After further
iteration on the wavetable synthesis with implementation shifted from lists
to arrays, the process was well optimized.

• Render with basic reverb effect.
Successful application of a time-delay based reverb effect and rendered for
Fur Elise.

RESULTS

• The musical paradigm is an intuitively functional paradigm
Functional higher order functions and parallelism work well in tandem with
the musical paradigm and workflow.

• Quick prototyping and implementation of features and core elements
of music software.

Prototyping and implementing new features such as envelopes and
support for additional bitrates was painless and quick.

• Optimised to become more competitive
Optimization to utilize direct access arrays and further optimization for
unboxed arrays will bring performance even closer or better than current
standards.

• Components were developed by different team members and then
integrated and extended quickly between different modules.

Work within an Agile methodology such as Scrum/Kanban flows well.

CONCLUSION

• Support for additional input and output file types
Import file types such as MusicXML and export file types such as .mp3,
.flac, and .ogg to be competitive with existing frameworks.

• Additional functionality via filters and effects
Frequency based filters such as passes, shelves, and EQ
Amplitude based effects such as compression, gate, and distortion.
Time based effects such as delay,reverb, and chorus.

• Explore parallelism in further development
Integrating our current project into current industry standards such as
VST3

FUTURE WORK

THANK YOU
FOR YOUR
ATTENTION!
This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The
project was supported by the European Union, co-financed by the European Social Fund.

