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Context
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In Practice…
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History of Voss/fl
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Brief History

 Once upon a time (1990) at University of British 
Columbia there were:

➢ a generalized symbolic simulator (symbolic trajectory evaluator 
- STE) written in C and highly optimized,

➢ a general purpose theorem prover (HOL), and

➢ two experts eyeing each other suspiciously.

 Heureka moment:

➢ Use STE as decision procedure for HOL

- Needed to evaluate expressions

– With Boolean expressions + quantification

 Birth of fl….

8



Brief History cont.

 Reality hits:

➢ Very cumbersome to use.

- Interacting through HOL, but all debugging happened down in fl

➢ Started using fl by itself

- Simple typos crashed the system → type system → full language

➢ fl embedded in the Voss system became very powerful  for 
formal verification work.

 Intel lost $470 million in 1995 due to FDIV bug.

➢ “Invite” Carl to spend the summer at Intel…

 25 years later…
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The Four Phases of fl Usage
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Phase 1: As Scripting & 
Implementation Language

 The STE engine needs to be controlled.

➢ Usually differently for each hardware/proof effort.

 Integrating the Binary Decision Diagrams & SAT solver 
tightly into language makes

➢ Creating custom decision procedures very easy

➢ Makes debugging highly productive.

 An interpreted language is very helpful here

 Have complete control of the language allows rapid 
extensions and enhancements.
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Phase 2: As Property 
Specification Language

 fl with BDDs started to look like a quite useful 
specification language.

 To make this even better, the language was 
extended to allow conditionals to be symbolic.

 Mechanisms for making it easy to create simple 
Domain Specific Languages for specification were 
also added
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Example of Symbolic Conditional



Even in Control Structures…
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Phase 3: As Term Language in a 
Theorem Prover 

 HOL-Voss (separate theorem prover and model checker):

➢ HOL provided TP, fl provided model checking capabilities

➢ Very difficult to use, common case slow, overkill

 VossProver (deep embedding of logic in fl)

➢ Easier to use, but still extra layer of interpretation

➢ Very cumbersome to extend 

 Reflection

➢ Introduced reflection in fl so that fl programs can manipulate other fl
programs.

➢ No overhead for end user, trivial to extend, some “noise” in the 
theorem proving from fl (e.g., print statements etc.)
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Phase 4: As Hardware Modeling 
Language (HFL)

 Concise and very general.

 Strong type checking without much overhead

 Easily extensible

 Tightly integrated with the formal verification engine

➢Allows: “Integrated Design and Verification”



Example of HFL
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Example of HFL cont.

Circuit to evaluate the Collatz conjecture.



Deep Dive in Using fl

Example 1:

Symbolic Time Series Specification
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Challenge

 Suppose you have been tasked to design a circuit 
that watches a (noisy) input signal and that needs to 
recognize certain patterns.

➢ For example, if the input could look like:

 How do you write a spec?
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DSL For Time Series: Datatype

 Note use of bv (bitvectors) rather than ints.

➢A bv is a dynamically growing list of bools used to 
represent a 2’s complement number.

➢Symbolic if-then-else automatically adjust the size of a 
bv so that the “then” and “else” bvs are structurally 
equal.

21



DSL Functions
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Extensive use

of overloading

Extensive use of

fixity declarations



Simple Example of Time Series
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User Extensible Language….
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More Complex Example of TS
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DSL to Sequence
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Extensive use

of overloading



Simple Example of Time Series
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More Complex Example of TS
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Example of Symbolic Spec.
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Symbolic Spec. Characteristics
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Enumerated Examples from Spec.
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Test Within Specification?
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Tolerance



Characterize a Collection of TSs.

 In other words: There are no time series in our tests 
that has the pattern repeated 2 or 3 times.
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Why a Symbolic Spec?

 Use it as spec. to verify an implementation.

 Check if explicit test satisfies the spec.

 Characterize a collection of tests.

 Generate “interesting” tests for corner cases.

 Use it to create labels for supervised machine learning.

 Augment existing training data for supervised machine 
learning.

 …
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Summary
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“The Good”

 Fl has ended up serving as:

➢Property specification language

➢ Implementation language for FPV & FEV tools

➢Scripting language for the end-user

➢ Term language for theorem proving

➢Modeling language for hardware

➢Environment for developing symbolic algorithms

 And it is quite good at all of them!
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“The Bad”

 Execution speed and memory footprint is a serious 
issue when dealing with large (LARGE) designs.

 Many functions have migrated into C inside VossII to 
provide sufficient performance

➢Correctness issue

➢ Flexibility issue

 The mixture of fl and tcl/tk code for GUI is a source 
of much headache.

➢Visualization is a requirement, but difficult to do cleanly in 
functional language.
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The “Ugly”

 Embedded Domain Specific Languages always end 
up with some quirky syntax to enable embedding in 
host language.

➢ Fl provides a number of novel fixity and binders to 
minimize this, but not removing it entirely

 Type errors can be intimidating….
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“The Ugly”

 A missing comma yields:
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“The Ugly”

 Unused (not explicitly typed) declaration makes type 
checker fail with very little explanation….
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Lessons Learned
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Why is it Successful?

 Voss/fl provides a unified environment that makes it easy to 
build, extend, and use formal verification methods.

 There is a natural fit in the semantic model for specifications 
(functional)

 The performance of the interpreter is not on the critical path 
for most applications

 The system is easily and safely extensible by the 
(experienced) user.

 Voss/fl provides a major new capability!

➢ The cost of “swallowing” fl is paid back by the new capabilities.



Announcement:

 VossII is (as of a week) open source (Apache 2.0)!

 See: https://github.com/TeamVoss/VossII

 There are prebuilt binaries for Linux if you just want 
to try it out. See the README on github repository 
for more details.

 If this presentation has made you curious, download 
it and do something wonderful with it 

➢But please tell me what you did ☺
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Questions
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Backup Slides
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Demo of Using fl for
Hardware Design
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Larger Example



Larger Example
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Larger Example



Larger Example



Simulation Stimuli Creation

Yet another DSL!



Waveform View



Circuit View



FSM Behavior View



Track Information Flow


