- _Fu né,tjgnal Programming for

. H: rﬂuwaize Design:

1r
’

1

[ ()1

February 13, 2020



Outline







The Design Process at 10,000 ft

\' - Micro- Design Mask Test
Archltect Engineer Designer Engineer

A
a i : of mask .
e Architecture [ - ‘ : Original
Analysis T~ that yield
Y : . transistors Product

Architect

and wires Target

Validation

MAS: Micro-Architecture Specification
RTL: Register-Transfer Language This is the theory“_



In Practice...

Micro-
Architect

Design
ngineer
Test
Mask Engineer
Designer

Original
Product

!I_!f_ Re:)oa;:ltted
uii

e " Reality

~2-3 years ~1 year



Validation

Developltie

Architecture Deve i of mask ili Original
Analysis icro- that yield Product

Target

Validation

. L s ]

; How to: 1) check we captured what we wanted
2) check that we did not make a mistake along the way



} ory of Voss/fl



Brief History

* Once upon a time (1990) at University of British
Columbia there were:

> a generalized symbolic simulator (symbolic trajectory evaluator
- STE) written in C and highly optimized,

> a general purpose theorem prover (HOL), and

> two. experts eyeing each other suspiciously.

 Heureka moment:

> Use STE as decision procedure for HOL

- Needed to evaluate expressions
— With Boolean expressions + quantification

 Birth of fl....



Brief History cont.

* Reality hits:
> Very cumbersome to use.
- Interacting through HOL, but all debugging happened down in fl

> Started using fl by itself
- Simple typos crashed the system - type system - full language

> fllembedded in the Voss system became very powerful for
formal verification work.

s |ntel lost $4 70 million in 1995 due to FDIV bug.

> “Invite™ Carl to spend the summer at Intel...

e 25 years later...



u" Phases of fl Usage

10



Phase 1: As Scripting &
Implementation Language

 The STE engine needs to be controlled.

> Usually differently for each hardware/proof effort.

* |ntegrating the Binary Decision Diagrams & SAT solver
tightly into language makes

~ Creating custom decision procedures very easy

> Makes debugging highly productive.
* An Interpreted language is very helpful here

* Have complete control of the language allows rapid
extensions and enhancements.

11



Phase 2: As Property
Specification Language

o flwith BDDs started to look like a quite useful
. Specification language.

* Jo make this even better, the language was
extended to allow conditionals to be symbolic.

» Mechanisms for making it easy to create simple
Demain'Specific Languages for specification were
also added

12



Example of Symbolic Conditional

Vossll A

File Interrupt Help |

VARS "c a[3:0] b[3:0]";
o: :bool

: a::bool list

¢t b::bool list

: t c=>a | b;

[cka[3] + c'&b[3],ckal2] + c'&b[2],ckall] + c'&b[l] ,c&kal[0] + c'&b[0]]
it::bool list

13



Even in Control Structures...

Vossll

Interrupt

letrec fac n = n <= 'l => int2bv 1 | n*fac (n - '1);
fac: :bv->bv

¢ fac (int2bv §);

<f,T,T7,T7,T,F,F, F=>

it::bv

: bv2int it;

120

it::int

¢t cVARS "n[6:0]" "'} <= n AND n < 'le";
n::bv

: o on;

<F,n(3]_n,n(2]_n,n(l]_n,n[0]_n>

it::bv

: let res = fac n;

res: :bv

: res <= n*n + '6;

n[(3] n'&n[2] n'

it::bool

: enumerate examples 20 (depends res) it;

n[3:0]_n=0000
n[3:0]_n=0001
n[3:0] n=0010
n[3:0]_n=0011




Phase 3: As Term Language in a
Theorem Prover

* HOL-Vess (separate theorem prover and model checker):
> HOL provided TP, fl provided model checking capabilities
> Very difficult to use, common case slow, overkill
» \/ossProver (deep embedding of logic Iin fl)
> Easier to use, but still extra layer of interpretation
> \7ery cumbersome to extend
* Reflection

> Introduced reflection in fl so that fl programs can manipulate other fl
programs.

> No overhead for end user, trivial to extend, some “noise” in the
theorem proving from fl (e.g., print statements etc.)

15



Phase 4: As Hardware Modeling
Language (HFL)

» Concise and very general.

' Strong type checking without much overhead

* Easily extensible

 Tightly:integrated with the formal verification engine

> Allows: “Integrated Design and Verification”

16



Example of HFL

— Vossll A AN

File Interrupt Help

TYPE "word" 16;

: let collatz =
bit input clk.
bit input start.
word inmput t0.
bit output eql.
word intermal t newt.
bit internal is even is odd.
CELL "ecollatz" [
re ff clk newt t,
egql <=- (£t '=' '1),
is even <- ((t "%" '2) '=' ]},
is odd <- '~' is even,
CASE newt [
start --- t0,
eql --- &,
is odd --- ('3 '%v £ 47 1]},
is even --- [t '/' 12)
]l t

1;

collatz: :bit->bit->word->bit->pexlif

17



Example of HFL cont.

startp>

to[15:0]c

o
)

Circuit to evaluate the Collatz conjecture.




d ) ,’ 7 ! .
LR O Y |

De :‘;\‘n Dive i“ Usi“g fl

Example 1.

cun ,Iic Time Series Specification

19



Challenge

* Suppose you have been tasked to design a circuit
that watches a (noisy) input signal and that needs to
[ecognize certain patterns.

> Fer example, If the input could look like:

* How do you write a spec?

20



DSL For Time Series: Datatype

Vossll

Interrupt

lettype atom =
STEADY {value::bv} {duration::bv}
| SLOPE {from wvalue::bv} {to wvalue::bv} {duration::bwv}

| FOLLOWS {f::atom} {s::atom}
| CoMD {c::bool} {t::atom} {e::atom}
| REPEAT {cnt::bv} {atom::atom}

* Note use of bv (bitvectors) rather than ints.

> AV IS a dynamically growing list of bools used to
represent a 2’'s complement number.

> Symbolic if-then-else automatically adjust the size of a
bv so that the “then™ and “else” bvs are structurally
equal.

21



DSL Functions

Ay bbb

Zhy time);

REFEAT (intZbv it} als

al cnt
1 cnt = REPEAT cnt
.pea+ i repeat_h:

1 [
o

Extensive use
of overloading

22



Simple Example of Time Series

Vossll

File Interrupt Help |

let s0 =

[
0 for 20 seconds ==
0 --> 20 duration 10 seconds =>>
20 --> 100 duration 5 seconds »>
100 for 10 seconds >>
100 --> 0 duration 10 seconds

JAAZ >

0 for 20 seconds

s0::atom

23



User Extensible Language....

24



More Complex Example of TS

(72 =

— gy — g AT = e L — I S L ,-"r /_V\
File Interrupt Help

let 51 =
0-->30 duration 5 seconds >>
30 for 20 seconds >>
30-->0 duration 5 seconds >>

(

(exp decay '0 "100 'l6) ==
100 for 20 seconds ==
(exp decay '100 '0 '1l6) >>
0 for 18 seconds

) AAT

gl::atom



Extensive use

DSL to Sequence of overloading

= Vossll 7S
Interrupt
(STEADY  dur) = dur
get _duration (SLOPE _ _ dur) = dur
get duration (FOLLOWS sl s2) = get durp#ion sl + get duration s2

get duration (COND ¢ t e) = ¢ => gef duration t | get duration e
get duration (REPEAT cnt s) = cnt * get duration s

get duration::atom->bv

26



Simple Example of Time Series

Vossll

File Interrupt Help |

let s0 =

[
0 for 20 seconds ==
0 --> 20 duration 10 seconds =>>
20 --> 100 duration 5 seconds »>
100 for 10 seconds >>
100 --> 0 duration 10 seconds

JAAZ >

0 for 20 seconds

s0::atom

: let s0 _flat = (atom2sequence 200 s0);

s0_flat::bv list

: let v0 = visualize sequences (get sequence examples 40 s0 flat);
vl :void

: vil;

27



More Complex Example of TS

File Interrupt Help

let 51 =
0-->30 duration 5 seconds >>
30 for 20 seconds >>
30-->0 duration 5 seconds >>

(

(exp decay '0 "100 'l6) ==
100 for 20 seconds >>
(exp decay '100 '0 '16) =>>
0 for 18 seconds

) AAJ

gl::atom

: let 81 flat = (atom2sequence 400 s1);

gl flat::bv list

: visualize sequences (get sequence examples 40 s1 flat);

28



Example of Symbolic Spec.

Vossll

File Interrupt Help

cVARS "tl1[8:0] t2[8:0] ent[3:0] warmup"
"i'h < £]1 AND £1 < t£2 AND t2 < '30 AND '0 <= cnt AND cnt <= '3)"

warmup: :bool
tl::bwv
t2::bv
cnt::bv

29



Symbolic Spec. Characteristics

: let g2 flat = (atom2sequence 400 s2);
g2 flat::bv list

: time (length s2 flat);

(400, "134.8")

it::intHstring

: bdd size 52 flat;

36579

it::int

: 2**(length (depends s2 flat));
8192
it::int

30



Enumerated Examples from Spec.




Test Within Specification?

Vossll

File Interrupt Help |

let test sequence {spec seq::bv list} {delta::int} {t seq::int list} =
let b delta = int2bv delta in
length spec seq != length t seq ==
error "Length mismatch in test sequence"

|
letrec tst (sp:sps) (t:ts) =

(abs (sp-int2bv t) == b delta) AND (tst sps ts)
FA kst [1 [1 =T )
in

tet spec seq t_seq
test sequence:: (bv list)->int->(int list)->bool

Tolerance

32



Characterize a Collection of TSs.

: let covered = itlist (\ts. \r. r OR (test sequence s2 flat 10 ts)) tests F;
covered: :bool

: bdd size covered;

149

it::int

: forecing covered;

[("ent[1]_n", F)]

it::stringHbool list
: cnt;
<F,ent[1]_n,ent[0]_n>
jlit: :bv

* |n other words: There are no time series in our tests
that has the pattern repeated 2 or 3 times.

33



Why a Symbolic Spec?

e Use It as spec. to verify an implementation.

» Check I explicit test satisfies the spec.

* Characterize a collection of tests.

* Generate “interesting” tests for corner cases.

» Use It to create labels for supervised machine learning.

s Augment existing training data for supervised machine
learning.

34



] Summary

35



“The Good”

* Fl has ended up serving as:
> Property specification language
> Implementation language for FPV & FEV tools
> Scripting language for the end-user
> dermm language for theorem proving
> Modeling language for hardware

> Envirenment for developing symbolic algorithms

* And It Is quite good at all of them!

36



“The Bad”

* Execution speed and memory footprint is a serious
ISSue when dealing with large (LARGE) designs.

» Viany functions have migrated into C inside VosslI to
provide sufficient performance

> Correctness issue

> Flexibility issue

o The mixture of fl and tcl/tk code for GUI Is a source
of mueh headache.

» Visualization Is a requirement, but difficult to do cleanly in
functional language.

37



The “Ugly”

 Embedded Domain Specific Languages always end
Up with seme quirky syntax to enable embedding in
AosSt language.

> Flfprovides a number of novel fixity and binders to
minimize this, but not removing it entirely

* Type errors can be intimidating....

38



“The Ugly”

* A missing comma yields:

— Vossll 0| W

bit _input regl regl.
bit output ack0 ackl.

bit _internal only0 onlyl both last.
CELL "draw_hier arbiter™ [
onlyl <- regl '&' '~' regqgl,
onlyl <=- regl '&' '~' reg(,
both =<- regl '&' reqgl
STATE clk last [
reset --- "0,
only0 --- '0,
onlyl --- '1,
both --- '~' last
]J
ackl <- only0 '|' both '&' last,
ackl <- onlyl '|' both '&' '~' last

1;
===Infinite type
===Type error around line 616
Inferred type is:
(((bit->*->(bitH#* list) ->pex]lif) ->**->k*k._>kxxkJHx*x% ]igt)
but its usage requires it to be of type:
&




“The Ugly”

* Unused (not explicitly typed) declaration makes type
checker fail with very little explanation....

Vossll

File Interrupt Help

},"(3)] bit->bit->bit->bit->bit->bit->pexlif
: let arbiter =
bit input clk reset.
bit input regl regl.
bit output ackl ackl.
.n'lhl.n'I|l
bit intermal only0 onlyl both last.
internal foo.
CELL "draw _hier arbiter" [
onlyl <- regl '&' '~' regqgl,
onlyl <- regl '&' '~' regfi,
both =<- regl '&' regql,
STATE clk last [
reset --- "0,
only0 --- '0,
onlyl --- '1,
both --- '=!' last
] I
ackl <- only0 '|' both '&' last,
ackl <- onlyl '|" both '&' '~' last
1;
arbiter:: [hw_values (12) ,hw _constr (34) ,hw mk wvar(17) ,hw size(15) ,hw _destr(77),+(5
f).'(3)] bit->bit->bit->bit->bit->bit->pexlif 40




sons Learned

41



Why is it Successful?

» \oss/fl'provides a unified environment that makes it easy to
build, extend, and use formal verification methods.

» There Is a natural fit in the semantic model for specifications
(functional)

* The performance of the interpreter is not on the critical path
for mest applications

» The system Is easily and safely extensible by the
(experienced) user.

Voss/fl provides a major new capability!

> The cost of “swallowing” fl is paid back by the new capabilities.

42



Announcement:

* \ossll Is (as of a week) open source (Apache 2.0)!

S EE: NitpSs://eithub.com/TeamVoss/Vossl|

s [lhere are prebuilt binaries for Linux If you just want

to try it out. See the README on github repository
for more details.

o |fithis presentation has made you curious, download
it and do something wonderful with it

> But please tell me what you did ©

43


https://github.com/TeamVoss/VossII

44



45



46



Larger Example

: ENUM "four_ phase" ["IDLE", "REQ", "ACK", "DONE"];

let rd protocol ifc =
bit_input clk.
bit_input start.
bit input ack.
input din.
bit_output req.
bit output done.
output dout.
four phase internal state.
bit internal reset.

CELL "draw _hier rd ifc fsm" [
reset <- '~' start,
req <- is_REQ state,
Moore FSM "ifc" c¢lk state (reset --- IDLE) [
IDLE --- gtart --=- REQ,
REQ --- ack - - - ACK,
ACK --- '~1' ack --- DONE

1.
re ff en clk (is_REQ state '&' ack) din dout,
done <- is_DONE state




Larger Example

ENUM "process" ["IDLE", "READ A", "READ B", "COMP", "WRITE RES"];
TYPE "byte" 8;

TYPE "data" &;

TYPE "addr" 16;

ENUM "opcode" ["OP ADD", "OP SUB"];

STRUCT "op" [

("opcode™, "opcode"),
("dest”, "addr") ,
{llsrcl L] - n ﬂddrll } -
("src2™, "addr")




Larger Example

let test =
bit input clk reset do op.
op_input op_in.
addr output addr.
data input din.
data ocutput dout.
bit ocutput mem red I'w.
bit input mem ack.
!
internal rl r2 r top fsm op.
internal read a done read b done write done rdA reqg rdB req wr_red.
CELL "test" [
re ff en clk do op op _in op,

Moore FSM "comp" clk top fsm (reset --- IDLE) [
IDLE === do op --- RERD A,
READ A --- read a done --- READ B,
EEAD B --- read b done --- COMP,

COME --- default --- WRITE RES,
WRITE RES --- write done --- IDLE

]r
rd protocol ifc clk (is READ A top fsm) mem ack din rdA req read a done rl,
rd protocol ifc clk (is READ B top fsm) mem ack din rdB req read b done r2,
wr_protocol_ifc clk (is WRITE RES top fam) mem ack r wr req write done dout,
mem req <- rdA reqg '|' rdB reqg '"|' wr_req,
CASE addr [

is READ A top fsm --- op-->srecl,

is READ B top fsm --- op-->src2,

is WRITE RES top fam --- op-->dest

1 "X,
'w <- '"=' wWr redq,
CRSE r [

is OP ADD (op-->opcode) (rl "+' r2),

is OP SUB (op-->opcode) (rl "-' r2)

] "X




Larger Example

clkb—| -

is READ A

mem ackb— |
din[7:8] pmmmed |

op in[48:
do

clk

B]F—|.|
opte I

=]

is_OF _ADD

rd Ifc fsm

req

ctart don

[

is WRITE RES

mem ack

L

Ak
ﬂin[?:ﬁ]dDUt[?:B]

clkD—L
is READ B

mem ack— |
din[7:8]E I

rd_ifc fsm

oLk req

start don

{0

Ak
din[?:a]dout[?:ﬁ]

is OP 5IJE|»

—

A[T:0] 0

wr_ifc Tsm

req

Etart done

pck
:Ijn[?:B]'j“”t[?:B]

reset p——
clk

READ A

addr[15:8]

K[15: 0] [

{ dout[7:8]

LD— mem_req
=

_____{::;(F___ w




Larger Example

op :in[4E:B]D_|_,D_‘
do opls E
clkD—"u

is WRITE RES

mem_ack

is OF ADD

clkb————1 rd ifc Tsm
rlk req|
s READ A start d
pCk .
mem amb_';njn[?:ﬂ]m”t[?:ﬂ]_
din[7:8] ¢
clkb————1 rd ifc tsm
rlk req|
is READ B start d
pck .
mem ackp_';djn[?:ﬁ]no"'t”:ﬂl_
din[7:8]&

is 0P _SUB

—

X[7:0]b

wWr_ifc_fsm

req

Etart dane

pck
Ij:-“.l[?:B]m)ut[?:ﬁ]

reset p——
clk

is READ A

50 = IDLE

51 = READ_A

52 = READ_B

53 = COMP

54 = WRITE_RES

il = do_op

iz = read a done

i3 = read b done
write done

reset
clk

AT
o
(]

is WRITE RES

=fdest

addr[15:8]

H[15: 0 ] [o—

— dout[7:8]

N ]

-

.. Mo



Simulation Stimuli Creation

let ant =

"elk" is _clock 50
and

"reget" is "1" in cycle 0 followed by "0" for 49 cycles
and

"do op" is "1" in cycle 4 followed by

"l" in eycle 30
otherwise "0" until 50 cycles

and

mop in[48:0]" is (mk op OP ADD '3 '0 'l) in cycle 4 followed by Yet another DSL!

(mk op OP SUB '0 '3 '1l) in cycle 30

and
"din[7:0]" is "a[7:0]" in cycle 7 followed by
"BI[7:0]" in ecycle 12 followed by
"A[7:0]" in cycle 32 followed by
"B[7:0]" in cycle 34
and
"mem ack" is "1" in cycle 7 fellowed by
nlr in cycle 12 followed by
"l" in cycle 18 followed by
nlr in cycle 32 followed by
"l" in cycle 34
otherwise "0" until 50 cycles

>¢|Zoom <3| [ Show dependencies: j- i

Vector:

klk

reset

do_op
op_in[48:0]
din[7:0]

mem_ack




Waveform View

Vector:

clk

reset

do_op
op_in[48:0]
din[7:01

mem_ack
top_fsm[2:0] IDLE READ_A READ B comMp WRITE_RES IDLE
adart15:0

dout[7:0]

mem_req

w




[~ show dependencies: | Show values: - - -

g
do opb———m—m

P
u
7
i u
clkb—
P
is WRITE RES | comp
. L
op in[48:8] D _’ :@[ —
G0 op ] €T L Lop— T T (]
Wr 1TC _TSm |
N | | klk req |
clk ctart d ha
on ]
[ rd Ifc Ten ] i .
O . Hin[7:0]00Ut[7:0] fm—
Etart do |
mem_ack - Bck Tk ' rESEtDB_
D_'y Hin[7:pdout [7:0]fm— (S
din[7:0] o= O -
[t ifc fsm | -
Klk reg—
i :E;rt dan A
men ackbx—'_din[?zﬁluout[?:a]'—
din[7:8] oap—
is 0P SUB
= addr[15:8]
X
X[7:8]B

=dest

H[15: 0] e

f dout [7:8]

L
’_DL mem_req
I

ThoTe T




FSM Behavior View

[~ Show dependencies: v Show values: J- +

0
do opb———

i
u
£
- u
clk—
is WRITE_RES 1 comp
_ L]
op in[48:8] X ] mem_ack L | ke B
4 ] B:30BB0ENT P ADD —»@c
0 opb is Wr_1fc_tsm .
h [ Flk req ]
clk Etart d i
on {
rd_ifc_fsm pck dout[7:8][ 7
req edin[7:8]d0U o ] r— is READ A
ktart don ha —
a ck -k Ll ]
mem ackb_,_rnjn[?:ﬁld"”t[?:a]_ reset p——
din[7:0] o O clkp—
C1k>—|_ rd_ifc fsm
KLk req
e ;
kb—T] a1k
r!1em ac " rdin[?:ﬂ]”””t[?'al_
din[7:8]
is 0P SUEF
X
X[7:8]
-
is_REA
1

is WRITE RES
[ =3

>dest

PURLT] |- —

e dout(7:0]

u
50 = IDLE il = do_op 30 L
51 = READ_A i2z = read_a_done ] ]
52 = READ B i3 = read b_done I ’_Df mem_req
53 = COMP i4 = write done 39
54 = WRITE_RES i5 = reset 1
i6 = clk >° ™




Track Information

v Show dependencies: [v Show values: J- +

]
do_op
I
i
I
- u
clk—
is_WRITE_RES comp
7
DD_iﬂ[4E:9]ﬁ'_l.r mem_ack READ_E
] 3000000 T
do_opi- I is_OP_ADD
chp'—"L r
u
[ r—
is READ A
[ 3
u
resetb_—
. clht—
rd_ifc_tsm |
ek —  © req
tart o i
[ek don {
pftin[7:0]d0ut [7:8] =
din[7:8]
|
is c-P_suaF
_— st
X
X[7:8]
is_READ B |
=5rid
—| is WRITE RES
i3
=fest -
X[15:8]
i dout[7:8]
mem_req

D
_|>o'-_




