
Functional Programming for
Hardware Design:
The Good, The Bad, The Ugly.

Carl Seger

CSE, Chalmers

February 13, 2020

1

2

Outline

 Context of talk

 History of Voss/fl

 Using fl for HW design

 Conclusions

➢ The Good

➢ The Bad

➢ The Ugly

3

Context

4

Original

Product

Target

Architect
Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

The Design Process at 10,000 ft

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

This is the theory…

Ideas

Validation

MAS: Micro-Architecture Specification

RTL: Register-Transfer Language

5

In Practice…

Original

Product

Target

~2-3 years ~1 year

Test

EngineerMask

Designer

Design

Engineer

Micro-

Architect

Architect

Target

Repainted

to fit

Reality

6

Validation

Original
Product
Target

MAS Schematics Layout/

Mask

RTL

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

Validation

How to: 1) check we captured what we wanted
2) check that we did not make a mistake along the way

History of Voss/fl

7

Brief History

 Once upon a time (1990) at University of British
Columbia there were:

➢ a generalized symbolic simulator (symbolic trajectory evaluator
- STE) written in C and highly optimized,

➢ a general purpose theorem prover (HOL), and

➢ two experts eyeing each other suspiciously.

 Heureka moment:

➢ Use STE as decision procedure for HOL

- Needed to evaluate expressions

– With Boolean expressions + quantification

 Birth of fl….

8

Brief History cont.

 Reality hits:

➢ Very cumbersome to use.

- Interacting through HOL, but all debugging happened down in fl

➢ Started using fl by itself

- Simple typos crashed the system → type system → full language

➢ fl embedded in the Voss system became very powerful for
formal verification work.

 Intel lost $470 million in 1995 due to FDIV bug.

➢ “Invite” Carl to spend the summer at Intel…

 25 years later…

9

The Four Phases of fl Usage

10

Phase 1: As Scripting &
Implementation Language

 The STE engine needs to be controlled.

➢ Usually differently for each hardware/proof effort.

 Integrating the Binary Decision Diagrams & SAT solver
tightly into language makes

➢ Creating custom decision procedures very easy

➢ Makes debugging highly productive.

 An interpreted language is very helpful here

 Have complete control of the language allows rapid
extensions and enhancements.

11

Phase 2: As Property
Specification Language

 fl with BDDs started to look like a quite useful
specification language.

 To make this even better, the language was
extended to allow conditionals to be symbolic.

 Mechanisms for making it easy to create simple
Domain Specific Languages for specification were
also added

12

13

Example of Symbolic Conditional

Even in Control Structures…

14

Phase 3: As Term Language in a
Theorem Prover

 HOL-Voss (separate theorem prover and model checker):

➢ HOL provided TP, fl provided model checking capabilities

➢ Very difficult to use, common case slow, overkill

 VossProver (deep embedding of logic in fl)

➢ Easier to use, but still extra layer of interpretation

➢ Very cumbersome to extend

 Reflection

➢ Introduced reflection in fl so that fl programs can manipulate other fl
programs.

➢ No overhead for end user, trivial to extend, some “noise” in the
theorem proving from fl (e.g., print statements etc.)

15

16

Phase 4: As Hardware Modeling
Language (HFL)

 Concise and very general.

 Strong type checking without much overhead

 Easily extensible

 Tightly integrated with the formal verification engine

➢Allows: “Integrated Design and Verification”

Example of HFL

17

18

Example of HFL cont.

Circuit to evaluate the Collatz conjecture.

Deep Dive in Using fl

Example 1:

Symbolic Time Series Specification

19

Challenge

 Suppose you have been tasked to design a circuit
that watches a (noisy) input signal and that needs to
recognize certain patterns.

➢ For example, if the input could look like:

 How do you write a spec?
20

DSL For Time Series: Datatype

 Note use of bv (bitvectors) rather than ints.

➢A bv is a dynamically growing list of bools used to
represent a 2’s complement number.

➢Symbolic if-then-else automatically adjust the size of a
bv so that the “then” and “else” bvs are structurally
equal.

21

DSL Functions

22

Extensive use

of overloading

Extensive use of

fixity declarations

Simple Example of Time Series

23

User Extensible Language….

24

…

More Complex Example of TS

25

DSL to Sequence

26

Extensive use

of overloading

Simple Example of Time Series

27

More Complex Example of TS

28

Example of Symbolic Spec.

29

Symbolic Spec. Characteristics

30

Enumerated Examples from Spec.

31

Test Within Specification?

32

Tolerance

Characterize a Collection of TSs.

 In other words: There are no time series in our tests
that has the pattern repeated 2 or 3 times.

33

Why a Symbolic Spec?

 Use it as spec. to verify an implementation.

 Check if explicit test satisfies the spec.

 Characterize a collection of tests.

 Generate “interesting” tests for corner cases.

 Use it to create labels for supervised machine learning.

 Augment existing training data for supervised machine
learning.

 …

34

Summary

35

“The Good”

 Fl has ended up serving as:

➢Property specification language

➢ Implementation language for FPV & FEV tools

➢Scripting language for the end-user

➢ Term language for theorem proving

➢Modeling language for hardware

➢Environment for developing symbolic algorithms

 And it is quite good at all of them!

36

“The Bad”

 Execution speed and memory footprint is a serious
issue when dealing with large (LARGE) designs.

 Many functions have migrated into C inside VossII to
provide sufficient performance

➢Correctness issue

➢ Flexibility issue

 The mixture of fl and tcl/tk code for GUI is a source
of much headache.

➢Visualization is a requirement, but difficult to do cleanly in
functional language.

37

The “Ugly”

 Embedded Domain Specific Languages always end
up with some quirky syntax to enable embedding in
host language.

➢ Fl provides a number of novel fixity and binders to
minimize this, but not removing it entirely

 Type errors can be intimidating….

38

“The Ugly”

 A missing comma yields:

39

“The Ugly”

 Unused (not explicitly typed) declaration makes type
checker fail with very little explanation….

40

41

Lessons Learned

42

Why is it Successful?

 Voss/fl provides a unified environment that makes it easy to
build, extend, and use formal verification methods.

 There is a natural fit in the semantic model for specifications
(functional)

 The performance of the interpreter is not on the critical path
for most applications

 The system is easily and safely extensible by the
(experienced) user.

 Voss/fl provides a major new capability!

➢ The cost of “swallowing” fl is paid back by the new capabilities.

Announcement:

 VossII is (as of a week) open source (Apache 2.0)!

 See: https://github.com/TeamVoss/VossII

 There are prebuilt binaries for Linux if you just want
to try it out. See the README on github repository
for more details.

 If this presentation has made you curious, download
it and do something wonderful with it

➢But please tell me what you did ☺

43

https://github.com/TeamVoss/VossII

Questions

44

Backup Slides

45

Demo of Using fl for
Hardware Design

46

Larger Example

Larger Example

Larger Example

Larger Example

Larger Example

Simulation Stimuli Creation

Yet another DSL!

Waveform View

Circuit View

FSM Behavior View

Track Information Flow

