Andrew Lelechenko

Barclays, London

Lambda Days 2020, Krakéw, 13.02.2020

Reproducibility crisis

@ Problem: Many scientific studies are difficult or impossible to
replicate or reproduce.

@ According to 2016 poll by Nature, 70% of 1500 participants
failed to reproduce other scientist’s experiment.

@ Even worse: 50% failed to reproduce their own experiment.

@ Social sciences and medicine are most susceptible (kinda
expected).

@ But are computer sciences and mathematics secure?

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Reproducibility crisis — CS

C. Collberg, T. Proebsting, A. M. Warren,
Repeatability and benefaction in computer systems research, 2015.

@ Collberg et al. conducted an exploration of ~ 400 papers from
ACM conferences and journals.

@ For 32.3% they were able to obtain the code and build it easily.

o For 48.3% they managed to build the code, but it may have
required extra effort.

@ For 54.0% either they managed to build the code or the
authors stated the code would build with reasonable effort.

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Reproducibility crisis — mathematics

abc conjecture

Let a, b, ¢ be coprime positive integers such that a+ b = c. Then
the product of distinct prime factors of a- b - ¢ is usually not much
smaller than c:

¢ > rad(abc)'*e.

In 2012 Shinichi Mochizuki outlined a proof on 500 pages.
In 2015-2016 several workshops tried to grasp his ideas.

In 2018 Peter Scholze and Jakob Stix identified a gap.

Mochizuki claimed that they misunderstood vital aspects of
the theory and made invalid simplifications.

o
o
@ In 2017 Go Yamashita published 300 pages of explanations.
o
o

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Concrete math

If | can give an abstract proof of something, I'm rea-
sonably happy. But if | can get a concrete, computational
proof and actually produce numbers I'm much happier. I'm
rather an addict of doing things on the computer.

John Milnor

As a computational and experimental pure mathemati-

cian my main goal is: insight. ... This is leading us towards
an Experimental Mathodology as a philosophy and in prac-
tice.

Jonathan M. Borwein,
/Esthetics for the working mathematician, 2001.

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Andrew Lelechenko

Barclays, London

Lambda Days 2020, Krakéw, 13.02.2020

Boolean blindness

Antipattern: use Bool to represent any type with two values:
data Bool = True | False
Example:
filter :: (a -> Bool) -> [a] -> [a]

Does True mean to keep or to discard here?

Pattern: use a domain-specific type.

data Action = Keep | Discard

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for the working mathematician

Int blindness and nominal typing

Antipattern:
substring :: Int -> Int -> String -> String

Is the second Int an offset or a count?

Pattern: use new types to wrap Ints and name them differently.

newtype Offset = Offset Int
newtype Count = Count Int
substring :: Offset -> Count -> String -> String

Question: would named arguments help?

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for the working mathematician

Int blindness and nominal typing — 2

Answer: not really. Named arguments do not prohibit invalid
operations:

@ Count + Count = Count

Offset
?

Offset + Count

°
@ Count + Offset
°

Offset + Offset = 7

Real world example:

montgomeryFactorisation
Integer -> Word -> Word -> Integer -> Maybe Integer

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for the working mathematician

Too many types!

Table 2.2: Driver routines for linear equations

Type of matrix Operation Single precision Double precision
and storage scheme real |complcx real |c0mp1cx
general |simple driver |SGESV [CGESV | DGESV ||ZGESV
expert driver | SGESVX |CGESVX | DGESVX |ZGESVX
general band simple driver | SGBSV |CGBSV |DGBSV |ZGBSV

|expert driver |SGBSVX |CGBSVX | DGBSVX [ZGBSVX

‘gcncral tridiagonal

|simple driver| SGTSV [CGTSV [DGTSV [[zGTsvV

|expert driver | SGTSVX |CGTSVX | DGTSVX |ZGTSVX

‘ symmetric/Hermitian

|simp1cdrivcr‘SPOSV |CPOSV ‘DPOSV |zmsv

‘ positive definite

|expert driver [SPOSVX [CPOSVX | DPOSVX [ZPOSVX

|symmetric/Hermitian simple driver | SPPSV |CPPSV [DPPSV [zPPSV
positive definite (packed storage) |expert driver | SPPSVX [CPPSVX |DPPSVX [ZPPSVX
symmetric/Hermitian |simple driver |SPBSV [CPBSV | DPBSV ||zPBSV
[positive definite band expert driver [SPBSVX |CPBSVX [DPBSVX |ZPBSVX
‘ symmetric/Hermitian simple driver ‘ SPTSV |CPTSV ‘DPTSV |ZPTsv
‘pnsi[ivc definite ridiagonal expert driver |SPTSVX |CPTSVX |DPTSVX |ZPTSVX
‘symmcu'icchnmtian simple driver | SSYSV |CHESV |DSYSV ||ZHESY

‘ indefinite

[expert driver || SSYSVX [CHESVX | DSYSVX |[ZHESVX
LAPACK User Guide, 3rd ed., 1999

A taste of abstract algebra

A set with an associative operation - such that
a-(b-c)=1(a-b)-cis called a semigroup.

If there is a neutral element, it is a monoid.

And if the operation is invertible, it is a group.

And if it commutes (so that a- b= b- a), it is an abelian
group.

A set with two sufficiently good operations may appear to be
a semiring, a ring, a rng or rig.

And if these operations are extraordinary good and fit for each
other, it may even play out to be a domain or a field.

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Type classes for the rescue

Show
All except
10,(>)

Read
All except
10, (>)

o Haskell solution: Type

classes for ad-hoc

polymorphism ord Num Bounded
All except (->) Int, Integer, Int, Char, Bool, ()
10, I0Error Float, Double Ordering, tuples

@ Problem: Vanilla
numeric classes are
notoriously unfit for
mathematics.

Enum
0, Bool, Char, Ordering,
Int, Integer, Float,
Double

Integral
Int, Integer

Real
Int, Integer,

Fractional
Jout, Double Float, Double

@ Haskell solution: Use
algebra package, which
offers a hierarchy of

RealFrac Floating
Float, Double Float, Double
RealFloat
. Float, Double
100+ numeric classes,
carefully reflecting

algebraic structures. J

@ Any problems?

The Haskell 2010 Report, S. Marlow (ed.), 2010

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Linear algebra

Problem: The determinant is defined only for square matrices.
Multiplication is defined only if the width of the first argument
matches the height of the second one.

det :: Matrix -> Maybe Double
mul :: Matrix -> Matrix -> Maybe Matrix

Haskell solution: Parametrize matrices by phantom type-level
numbers. E. g., Matrix 3 3, Matrix 2 4.

det :: Matrix n n -> Double
mul :: Matrix k 1 -> Matrix 1 m -> Matrix k m

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Modular arithmetic in cryptography

Problem: In modular arithmetic all values are reduced by modulo.
Values with different moduli are incompatible.

newtype Mod = Mod Int Int

(+) :: Mod -> Mod -> Maybe Mod

Mod n mod + Mod n’ mod’
| mod == mod’ = Just (Mod ((n + n’) ‘rem‘ mod)) mod
| otherwise = Nothing

Mod 4 7 + Mod 57 =7

Haskell solution: Parametrize modular values by phantom
type-level numbers.

data Mod (mod :: Nat) = Mod Int
(+) :: Mod m -> Mod m -> Mod m

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Singleton values

Definition

An integer r is a square root of n modulo m when r?> = n (mod m).

sqrtMod :: Mod m -> Maybe (Mod m)
sqrtMod (Mod 4 :: Mod 5) = Just (3 :: Mod 5)

Problem: The algorithm requires prime factorisation of m, which is
expensive to compute each time we need sqrtMod:

factorise :: Int -> [(Int, Int)]
factorise 60 = [(2, 2), (3, 1), (5, 1)]

Never forget to take a leverage of nominal types!
factorise :: Int -> [(Prime, Power)]

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Singleton values — 2

sqrtMod :: Mod m -> Maybe (Mod m)
sqrtMod :: [(Prime, Power)] -> Mod m -> Maybe (Mod m)

Haskell solution: Use singleton types, which establish a bijection
between a type-level index and its property, represented at the term
level. Define

newtype SFactors m = SFactors [(Prime, Power)]
and ensure by smart constructors that it has a single inhabitant.

sqrtMod :: SFactors m -> Mod m -> Maybe (Mod m)

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Lazy factorization

@ Prime factorisation is very expensive:
factorise :: Int -> [(Prime, Power)]
factorise 60 = [(2, 2), (3, 1), (5, 1)]

@ Problem: What if further computations depend only on the
first factor? Should we expose more helpers?
firstFactor :: Int -> (Prime, Power, Int)

o Haskell solution: In a lazy language an output list is
computed only on demand. If we consume only its head, other
elements are not computed at all. This helps to keep API neat
and concise.

firstFactor = head . factorise

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Recurrent sequences

Problem: Here are Fibonacci numbers:
Fo=0
=1
Fn = Fp—1+ Fn—2

Naive solution:

fib :: Int -> Int
fib n = if n < 2 then n else fib (n-1) + fib (n-2)

Haskell solution: Use a lazy list as a cache:
fibs :: [Int]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Riemann zeta function

Problem: Computational strategies for the Riemann zeta function
by Borwein et al., 2000:

(1272)¢(2m 1 1) ’"Zl (1—47F)¢(2k + 1)
(wi)?m — (wi)2k(2m — 2k)!

1
(2m)! {|0g2_+z4"n+m }

Haskell solution: There is a generic approach to memoize
recurrent sequences, using fix-point combinator and higher-order
functions. Moreover, one can split such computation into an actual
computation and memoization layer, which can be composed
independently.

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Fix-point combinator

This is a fix-point combinator:

fix :: (a -> a) -> a
fix f = £ (fix £f)

These are our naive Fibonacci numbers:

fib :: Int -> Int
fib n = if n < 2 then n else fib (n-1) + fib (n-2)

These are Fibonacci numbers with recursion factored out:

fibF :: (Int -> Int) -> Int -> Int
fibF f n = if n < 2 then n else f (n-1) + f (n-2)

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

Conclusion

@ Problem: mathematical objects are pure, immutable and lazy.

@ Solution: Haskell is pure, immutable and lazy.

Thank you!

https://github.com/Bodigrim/{arithmoi,chimera,mod,poly}

Disclaimer. The views expressed here are solely those of the author in his private capacity and do not
neccessarily reflect the views of Barclays.

Andrew Lelechenko Haskell for mathematical libraries

