
A DSL for 
Fluorescence Microscopy

Birthe van den Berg
Tom Schrijvers

Peter Dedecker

1



Introduction

2

DSL



3

Why fluorescence?



4

Why fluorescence?
- non-invasive

- in situ
- in vivo

- selective
- sample preparation

- simple
- wide range of fluorescent probes



5

What is fluorescence?



6

Fluorescence
Jablonski diagram



7

Fluorescence

Green
Fluorescent
Protein

M.Chalfie - O.Shimomura - R. Tsien
Nobel Prize in Chemistry 2008



8

Fluorescence

Quinine



9

Fluorescence Microscopy



10

Fluorescence Microscopy



11

Fluorescence Microscopy



12

Fluorescence Microscopy



13

Fluorescence Microscopy



So, what’s the problem?

14



So, what’s the problem?

15

- Growing technical complexity
- Expensive instrumentation



So, what’s the problem?

16

- Growing technical complexity
- Expensive instrumentation
- Dedicated staff members (researchers + technicians)



So, what’s the problem?

17

- Adapting the experimental strategy, setting many parameters
- No or little safety controls



So, what’s the clue?

18



So, what’s the clue?

19

Setting up an experiment
= 

Constructing a computer program



20

Our Solution



21

Light 
source

Camera Motorized 
stage

Filter 
wheels

Microscope 
body

Dichroic 
mirrors

Measurement 
controller

Haskell

GUI
Igor ProOur Solution



Solution: Controller vs GUI

22

Measurement 
controller

Haskell

GUI

- Communication with GUI



GUI

23



GUI: Example

24



Solution: Controller DSL
- Representing and reasoning 

over domain-specific knowledge

25

Measurement 
controllerDSL



Why DSL? Why Haskell?

GPL 

DSL 

Embedded 

FP 

Standalone 

OO Gibbons, Jeremy & Wu, Nicolas. (2014). Folding 
domain-specific languages: Deep and shallow 
embeddings (functional Pearl). Proceedings of the 
ACM SIGPLAN International Conference on Functional 
Programming, ICFP. 49. 10.1145/2628136.2628138. 26



Why DSL? Why Haskell?

GPL 

DSL 

Embedded 

FP 

Standalone 

OO Gibbons, Jeremy & Wu, Nicolas. (2014). Folding 
domain-specific languages: Deep and shallow 
embeddings (functional Pearl). Proceedings of the 
ACM SIGPLAN International Conference on Functional 
Programming, ICFP. 49. 10.1145/2628136.2628138. 27



DSL Fragment
data StagePosition   =  StagePosition {  x :: Double

       , y :: Double 
        , z :: Double  }

data MeasurementElement  = MEDetect 
  | MEWait  Double
  | MEIrradiate  Double ( String,  Double )
  -- duration ( light source , power )
  | MEDoTimes  Int  Prog
  | MEStageLoop  [ StagePosition ]  Prog
  | ...

type Prog                 =  [ MeasurementElement ]
28



DSL: Example

[ MEDoTimes 5 [ MEIrradiate 2 ( MarcelLumencor:violet , 15 ) 
   , MEWait 3 
   , MEDetect ] 

, MEWait 10 
, MEDetect ]

29



Deep embedding

30

executeProg :: Prog → IO ()
executeProg prog = foldMap executeME prog

executeME :: MeasurementElement → IO ()
executeME  MEDetect                         = executeDetection >> putStrLn (“detecting…”)
executeME (MEWait dur)                     = threadDelay (round $ dur * 1e6) 

>> putStrLn (“waiting…”)
executeME (MEIrradiate dur params) = executeIrradiation dur params 

>> putStrLn (“irradiating...”)
executeME (MEDoTimes n pr)             = 

mapM_ (\prs → executeProg prs) (take n . repeat $ pr) 
 >> putStrLn (“times...”)

executeME (MEStageLoop poss pr)    = 
mapM_ (\pos → setStagePosition pos >> executeProg pr) poss 

 >> putStrLn (“stage looping…”)



Solution: Controller vs Hardware

Light 
source

Camera Motorized 
stage

Filter 
wheels

Microscope 
body

Dichroic 
mirrors

Measurement 
controller

Haskell

GUI
Igor Pro- Controlling hardware

31



Hardware

Light 
sourceCamera Motorized 

stage
Filter 

wheels

Microscope 
body

Dichroic 
mirrors

32



Hardware: Example

33

[ MEDoTimes 5 [ MEIrradiate 2 
( MarcelLumencor:violet , 15 ) 

   , MEWait 3 
   , MEDetect ] 

, MEWait 10 
, MEDetect ]



34

Results



Results

35

usable software feedback loop

Light 
source

Camera Motorized 
stage

Filter 
wheels

Microscope 
body

Dichroic 
mirrors

Controller
Haskell

GUI
Igor Pro



Compared to already existing SW
- Modularity

- easily extendible for new hardware
- works with several hardware setups

- Arbitrary long, complex programs

36



Compared to already existing SW
- Modularity

- easily extendible for new hardware
- works with several hardware setups

- Arbitrary long, complex programs
- Also non-trivial, more complex tasks

- E.g. autofocus system

37



Future Work

38

DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work

39

DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work

40

What?

How?

DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work

41

- Increase performance
- optimal rescheduling
- parallelizing

- Safety and sanity checks

DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work

42

DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work

43

“A system that can learn from scientists and 
operators, and vice versa.”



44

SUGGESTIONS FEEDBACKQUESTIONS

Thanks!


