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Why fluorescence?
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Why fluorescence?
- non-invasive

- in situ
- in vivo

- selective
- sample preparation

- simple
- wide range of fluorescent probes
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What is fluorescence?
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Fluorescence
Jablonski diagram
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Fluorescence

Green
Fluorescent
Protein

M.Chalfie - O.Shimomura - R. Tsien
Nobel Prize in Chemistry 2008
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Fluorescence

Quinine
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Fluorescence Microscopy
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Fluorescence Microscopy
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Fluorescence Microscopy
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Fluorescence Microscopy



So, what’s the problem?
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So, what’s the problem?
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- Growing technical complexity
- Expensive instrumentation



So, what’s the problem?
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- Growing technical complexity
- Expensive instrumentation
- Dedicated staff members (researchers + technicians)



So, what’s the problem?
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- Adapting the experimental strategy, setting many parameters
- No or little safety controls



So, what’s the clue?
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So, what’s the clue?
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Setting up an experiment
= 

Constructing a computer program
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Our Solution
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Solution: Controller vs GUI
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Measurement 
controller

Haskell

GUI

- Communication with GUI



GUI

23



GUI: Example
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Solution: Controller DSL
- Representing and reasoning 

over domain-specific knowledge
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Measurement 
controllerDSL



Why DSL? Why Haskell?

GPL 

DSL 

Embedded 

FP 

Standalone 

OO Gibbons, Jeremy & Wu, Nicolas. (2014). Folding 
domain-specific languages: Deep and shallow 
embeddings (functional Pearl). Proceedings of the 
ACM SIGPLAN International Conference on Functional 
Programming, ICFP. 49. 10.1145/2628136.2628138. 26
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DSL Fragment
data StagePosition   =  StagePosition {  x :: Double

       , y :: Double 
        , z :: Double  }

data MeasurementElement  = MEDetect 
  | MEWait  Double
  | MEIrradiate  Double ( String,  Double )
  -- duration ( light source , power )
  | MEDoTimes  Int  Prog
  | MEStageLoop  [ StagePosition ]  Prog
  | ...

type Prog                 =  [ MeasurementElement ]
28



DSL: Example

[ MEDoTimes 5 [ MEIrradiate 2 ( MarcelLumencor:violet , 15 ) 
   , MEWait 3 
   , MEDetect ] 

, MEWait 10 
, MEDetect ]
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Deep embedding
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executeProg :: Prog → IO ()
executeProg prog = foldMap executeME prog

executeME :: MeasurementElement → IO ()
executeME  MEDetect                         = executeDetection >> putStrLn (“detecting…”)
executeME (MEWait dur)                     = threadDelay (round $ dur * 1e6) 

>> putStrLn (“waiting…”)
executeME (MEIrradiate dur params) = executeIrradiation dur params 

>> putStrLn (“irradiating...”)
executeME (MEDoTimes n pr)             = 

mapM_ (\prs → executeProg prs) (take n . repeat $ pr) 
 >> putStrLn (“times...”)

executeME (MEStageLoop poss pr)    = 
mapM_ (\pos → setStagePosition pos >> executeProg pr) poss 

 >> putStrLn (“stage looping…”)



Solution: Controller vs Hardware
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Hardware
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Hardware: Example
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[ MEDoTimes 5 [ MEIrradiate 2 
( MarcelLumencor:violet , 15 ) 

   , MEWait 3 
   , MEDetect ] 

, MEWait 10 
, MEDetect ]
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Results



Results
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usable software feedback loop
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Compared to already existing SW
- Modularity

- easily extendible for new hardware
- works with several hardware setups

- Arbitrary long, complex programs
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Compared to already existing SW
- Modularity

- easily extendible for new hardware
- works with several hardware setups

- Arbitrary long, complex programs
- Also non-trivial, more complex tasks

- E.g. autofocus system
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Future Work
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DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI
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DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work
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What?

How?

DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work
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- Increase performance
- optimal rescheduling
- parallelizing

- Safety and sanity checks

DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work
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DSL for knowledge representation

Operational DSL for controlling HW/SW

Fluorescence Microscopy Applications

GUI



Future Work
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“A system that can learn from scientists and 
operators, and vice versa.”
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SUGGESTIONS FEEDBACKQUESTIONS

Thanks!


