
Scaling Up Delta Debugging of
Type Errors

Joanna Sharrad
University of Kent

jks31@kent.ac.uk

Olaf Chitil
University of Kent

oc@kent.ac.uk

Example

Insert.hs:2:27: error:
• Occurs check: cannot construct the
infinite type: a ~ [a]
• In the expression: y : Main.insert x ys

1. insert x [] = x
2. insert x (y:ys) | x > y = y : insert x ys
3. | otherwise = x : y : ys

Insert an element into an ordered list:

Example from : Stuckey, P., Sulzmann, M., Wazny, J. 2004. Improving type error diagnosis.

Sharrad, J., Chitil, O., Wang, M. 2018. Delta Debugging Type Errors with a Blackbox Compiler.

1. insert x [] = x
2. insert x (y:ys) | x > y = y : insert x ys
3. | otherwise = x : y : ys

Example
This code has a type error.

Example from : Stuckey, P., Sulzmann, M., Wazny, J. 2004. Improving type error diagnosis.

Example

1.
2.
3. | otherwise = x : y : ys

1. insert x [] = x
2. insert x (y:ys) | x > y = y : insert x ys
3.

Applying Delta Debugging:

Example

1.
2.
3. | otherwise = x : y : ys

1. insert x [] = x
2. insert x (y:ys) | x > y = y : insert x ys
3.

FAIL (Type Error) UNRESOLVED

Applying Delta Debugging:

Can we scale up our debugger?
Average unresolved result for 900 program:

Can we scale up our debugger?
Pandoc Module - 87 lines of code

Application of the Moiety Algorithm

1| f x = case x of
2| 0 -> [0]
3| 1 -> 1
4| plus :: Int -> Int -> Int
5| plus = (+)
6| fib x = case x of
7| 0 -> f x
8| 1 -> f x
9| n -> fib (n-1) `plus` fib (n-2)

Pre-processing to avoids line-splits causing unresolveds

Application of the Moiety Algorithm

parse error on input1|
2| 0 -> [0]
3|
4|
5|
6|
7|
8|
9|

Application of the Moiety Algorithm

parse error on input1|
2|
3| 1 -> 1
4|
5|
6|
7|
8|
9|

Application of the Moiety Algorithm

not parse error on input

(3,4)

1|
2|
3|
4| plus :: Int -> Int -> Int
5|
6|
7|
8|
9|

Application of the Moiety Algorithm

not parse error on input

(3,4) (4,5)

1|
2|
3|
4|
5| plus = (+)
6|
7|
8|
9|

Application of the Moiety Algorithm

not parse error on input

(3,4) (4,5) (5,6)

1|
2|
3|
4|
5|
6| fib x = case x of
7|
8|
9|

Application of the Moiety Algorithm

parse error on input

(3,4) (4,5) (5,6)

1|
2|
3|
4|
5|
6|
7| 0 -> f x
8|
9|

Application of the Moiety Algorithm

Final Moieties (splitting points):

(3,4) (4,5) (5,6)

1| f x = case x of
2| 0 -> [0]
3| 1 -> 1
4| plus :: Int -> Int -> Int
5| plus = (+)
6| fib x = case x of
7| 0 -> f x
8| 1 -> f x
9| n -> fib (n-1) `plus` fib (n-2)

▫ A new type error evaluation framework for all

▫ Quantify the quality of the debugger

▫ Data Science - Accuracy, Recall, Precision, and F1 Score

Evaluation Framework

▫ Accuracy: Number of lines correctly excluded plus correctly

reported lines containing a type error.

▫ Recall: Number of errors that are reported correctly compared

to the number of errors within the source code.

▫ Precision: Number of correct lines of code reported by the

debugger compared to the total number of lines returned.

Evaluation Framework

Application of the Moiety Algorithm

▫ Lines of Code = 9

▫ Errors in Code = 1

▫ Returned Lines = 9

▫ Successfully Returned Errors = 1

1| f x = case x of
2| 0 -> [0]
3| 1 -> 1
4| plus :: Int -> Int -> Int
5| plus = (+)
6| fib x = case x of
7| 0 -> f x
8| 1 -> f x
9| n -> fib (n-1) `plus` fib (n-2)

The need for multiple metrics:

Application of the Moiety Algorithm

▫ Lines of Code = 9

▫ Errors in Code = 1

▫ Returned Lines = 9

▫ Successfully Returned Errors = 1

1| f x = case x of
2| 0 -> [0]
3| 1 -> 1
4| plus :: Int -> Int -> Int
5| plus = (+)
6| fib x = case x of
7| 0 -> f x
8| 1 -> f x
9| n -> fib (n-1) `plus` fib (n-2)

The need for multiple metrics:

Recall:

Application of the Moiety Algorithm

▫ Lines of Code = 9

▫ Errors in Code = 1

▫ Returned Lines = 9

▫ Successfully Returned Errors = 1

1| f x = case x of
2| 0 -> [0]
3| 1 -> 1
4| plus :: Int -> Int -> Int
5| plus = (+)
6| fib x = case x of
7| 0 -> f x
8| 1 -> f x
9| n -> fib (n-1) `plus` fib (n-2)

Recall = 100%

Precision:

Application of the Moiety Algorithm

F1 gives us the harmony mean of the two metrics

▫ Lines of Code = 9

▫ Errors in Code = 1

▫ Returned Lines = 9

▫ Successfully Returned Errors = 1

1| f x = case x of
2| 0 -> [0]
3| 1 -> 1
4| plus :: Int -> Int -> Int
5| plus = (+)
6| fib x = case x of
7| 0 -> f x
8| 1 -> f x
9| n -> fib (n-1) `plus` fib (n-2)

Recall = 100%, Precision = 12.5%

F1:

▫ A new scalability data-set based on Pandoc

▫ 80 type errors, 2 placed in each of 40 chosen modules

▫ Modules have between 32 to 2305 lines of code

▫ Comparison with our non-moiety debugger

▫ Can we reduce unresolved results and algorithm time?

▫ Does our framework quantify the quality of the debugger?

Evaluation

Reduce the number of unresolveds

Reduce Delta Debugging Time

The Evaluation Framework Figures
Gramarye19(G19) Elucidate20(E20)

Accuracy 94% 88%

Recall 38% 59%

Precision 16% 14%

F1 20% 19%

▫ Reduction of the time Moiety takes

▫ Increase our scalability data-set with more large programs

▫ Make our debugger programming language agnostic

Future Work

▫ Shown a type error debugger using Delta Debugging,

Blackbox compiler, and a Moiety algorithm

▫ Introduced a scalability data-set

▫ Introduced a new evaluation framework

▫ Unresolved outcomes lowered by 82%

▫ Reduced Delta Debuggings run-time by 77%

Thank You

