Scaling Up Delta Debugging of
Type Errors

Joanna Sharrad Olaf Chitil

University of Kent University of Kent
jks31@kent.ac.uk oc@kent.ac.uk

Example

Insert an element into an ordered list:

Insert.hs:2:27: error:

e Occurs check: cannot construct the
infinite type: a ~ [a]

e In the expression: y : Main.insert x ys

1. insert x [] = X
2. insert x (y:ys) | x >y =y : insert x ys
3. | otherwise = x : y : ys

Example from : Stuckey, P., Sulzmann, M., Wazny, J. 2004. Improving type error diagnosis.

Input raw source code (1,2).
Recursion over Program File (2,3,2). Source Code
Output result of Relevant Difference (2,4). .

2. /Gramarye 3.
Error Message

Delta Blackbox

/‘ul\ .
@ Debugging Compiler

Modification

N7
Source Code

o 4

Sharrad, J., Chitil, O.,, Wang, M. 2018. Delta Debugging Type Errors with a Blackbox Compiler.

Example

This code has a type error.

insert x [] = X
insert x (y:ys) | x >y =y : insert x ys
| otherwise = x : y : ys

Example from : Stuckey, P., Sulzmann, M., Wazny, J. 2004. Improving type error diagnosis.

Example

Applying Delta Debugging:

1. insert x [] = X 1.
2. insert x (y:ys) | x >y =y : insert x ys 2.
3. 3. | otherwise = x : y : ys

Example

Applying Delta Debugging:

1. insert x [] = X 1.
2. insert x (y:ys) | x >y =y : insert x ys 2.
3. 3. | otherwise = x : y : ys

FAIL (Type Error) UNRESOLVED

Can we scale up our debugger?

Average unresolved result for 900 program:

mm Average LoC
Number of Unresolved Results
unresolveds
2
4
7
14

Can we scale up our debugger?

Pandoc Module - 87 lines of code

CITOr message

The last statement in a 'do’ block must be an expression
Variable not in scope

Not in scope:

Empty 'do’ block

Parse error (incorrect indentation or mismatched brackets)
Empty list of alternatives in case expression

The type signature...lacks an accompanying binding

Parse error on input

Total

Application of the Moiety Algorithm

Pre-processing to avoids line-splits causing unresolveds

1| f x = case x of

2] 0 -> [0]

3| 1->1

4| plus :: Int -> Int -> Int

5| plus = (+)

6| fib x = case x of

71 90 -> f x

8| 1->fx

9| n -> fib (n-1) “plus’ fib (n-2)

Application of the Moiety Algorithm

parse error on input

Application of the Moiety Algorithm

Application of the Moiety Algorithm

not parse error on input

(3,4)
:: Int -> Int -> Int

Application of the Moiety Algorithm

1| not parse error on input
2|

3] (3,4) (4,5)

4]

5| plus = (+)

Application of the Moiety Algorithm

not parse error on input

(3,4) (4,5) (5,6)

6| fib x = case x of
7]
8|
9|

Application of the Moiety Algorithm

parse error on input

(3,4) (4,5) (5,6)

Application of the Moiety Algorithm

1| f x = case x of Final Moieties (splitting points):
2] 0 -> [0]

3| 1->1 (3:4) (4)5) (5)6)

4| plus :: Int -> Int -> Int

5| plus = (+)

6| fib x = case x of

71 90 -> f x

8| 1->fx

9| n -> fib (n-1) “plus’ fib (n-2)

Evaluation Framework

= A new type error evaluation framework for all
= Quantify the quality of the debugger
= Data Science - Accuracy, Recall, Precision, and F1 Score

Evaluation Framework

Accuracy: Number of lines correctly excluded plus correctly
reported lines containing a type error.

Recall: Number of errors that are reported correctly compared
to the number of errors within the source code.

Precision: Number of correct lines of code reported by the
debugger compared to the total number of lines returned.

Application of the Moiety Algorithm

The need for multiple metrics:

1| f x = case x of

2] 0 -> [0] . _

3] 151 Lines of Code =9

4| plus :: Int -> Int -> Int Errors in Code = 1

5| plus = (+) .

6| fib x = case x of Returned Lines =9

71 0 -> f x

8| 1 ->fx Successfully Returned Errors =1

9| n -> fib (n-1) “plus’ fib (n-2)

Application of the Moiety Algorithm

The need for multiple metrics:

1| f x = case x of

4| plus Errors in Code =1

5| plus Rg .

6| fib ekl 100% Returned Lines =9

7 0

SI 1 Successfully Returned Errors =1
9| nTSFIB(A=T) T plUSFIb (AT2)

Application of the Moiety Algorithm

Recall = 100%

1| f x = case x of

gl 2 Precision: Llnes Of COde = 9

4| plus Errors in Code =1
5| plus Rg

il
6| fib —— == = 12,576 Returned Lines =9
7|) RL 8

8| 1 Successfully Returned Errors =1
9] nTSFIB (ARSI PIUS FIB(A-2)

Application of the Moiety Algorithm

Recall = 100%, Precision = 12.5%

1| f x = case x of

gI 2F1:_ _ Lines of Code =9

4| plus Errorsin Code=1

5| plus Rg 1 .

;;I fibe b =B g Sl 2% Returned Lines =9

8] 1 Successfully Returned Errors =1
9] nTSTFIB(AST)PIUS FIB(A-2)

F1 gives us the harmony mean of the two metrics

Evaluation

A new scalability data-set based on Pandoc
= 80 type errors, 2 placed in each of 40 chosen modules
o Modules have between 32 to 2305 lines of code
Comparison with our non-moiety debugger
Can we reduce unresolved results and algorithm time?
Does our framework quantify the quality of the debugger?

Reduce the number of unresolveds

=== G19 Unresolves === E20 Unresolves

Unresolves Received

YPOAL DO YDD DL DDD DL DD PL O L RIDPLLRIEEL DL AR

Reduce Delta Debugging Time

=4 G19 Delta Debugging Time === E20 Delta Debugging Time
750

—n
| |

600

|

o
£
=)
>
3
a
[
(a]
=
]
[a]
k]
w
k-]
c
S
o
8
o
E
Ly
<
S
o

B G ﬁ ’ A ,
\ I\ il W

\06 | | ! ik g | d\ \/\ |
il ¥ \4&4{« ; \ ¢ BN b % o f

Y2 ONANOL D9 OD DDA DD DDA DDOORRIPDD RSO QDL H AR

The Evaluation Framework Figures

Gramaryel9(G19) Elucidate20(E20)
Accuracy 94% 88%

Recall 38% 59%
Precision 16% 14%

F1 20% 19%

Future Work

= Reduction of the time Moiety takes
Increase our scalability data-set with more large programs
= Make our debugger programming language agnostic

Thank You

= Shown a type error debugger using Delta Debugging,
Blackbox compiler, and a Moiety algorithm
Introduced a scalability data-set
Introduced a new evaluation framework
Unresolved outcomes lowered by 82%

Reduced Delta Debuggings run-time by 77%

